metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-yo-colab-charb
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: yo
split: test
args: yo
metrics:
- name: Wer
type: wer
value: 0.996996996996997
wav2vec2-large-xls-r-300m-yo-colab-charb
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.5786
- Wer: 0.9970
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4425 | 6.1538 | 400 | 1.1643 | 1.0 |
0.3455 | 12.3077 | 800 | 1.3662 | 1.0 |
0.1576 | 18.4615 | 1200 | 1.3859 | 0.9990 |
0.0764 | 24.6154 | 1600 | 1.5786 | 0.9970 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1