vietnamese_mt5_summary_model

This model is a fine-tuned version of huggingface-course/mt5-finetuned-amazon-en-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4447
  • Rouge1: 28.6205
  • Rouge2: 12.1892
  • Rougel: 22.6626
  • Rougelsum: 22.9635

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 3000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.7781 1.0 625 1.8391 28.5024 11.2717 22.108 22.4361
2.0622 2.0 1250 1.7576 28.0245 10.6112 21.7353 22.0685
1.8636 3.0 1875 1.6179 27.353 10.6238 21.4686 21.7512
1.7408 4.0 2500 1.6143 28.0928 11.2857 22.06 22.3629
1.6492 5.0 3125 1.5411 27.8209 10.9184 21.6819 21.9773
1.5448 6.0 3750 1.4802 28.0433 11.4232 22.0696 22.373
1.4454 7.0 4375 1.4621 27.8552 11.1708 21.8958 22.1949
1.3636 8.0 5000 1.4522 28.3264 11.7945 22.3563 22.6524
1.2978 9.0 5625 1.4347 28.444 11.9388 22.4279 22.7344
1.2445 10.0 6250 1.4447 28.6205 12.1892 22.6626 22.9635

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
33
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for chibao24/vietnamese_mt5_summary_model

Base model

google/mt5-small
Finetuned
(2)
this model

Dataset used to train chibao24/vietnamese_mt5_summary_model