chunwoolee0's picture
Update README.md
9f1c7e4
metadata
base_model: klue/roberta-base
tags:
  - generated_from_trainer
datasets:
  - klue
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: klue_ner_roberta_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: klue
          type: klue
          config: ner
          split: validation
          args: ner
        metrics:
          - name: Precision
            type: precision
            value: 0.9545986426398315
          - name: Recall
            type: recall
            value: 0.9557169634489222
          - name: F1
            type: f1
            value: 0.955157475705421
          - name: Accuracy
            type: accuracy
            value: 0.9883703228112445

klue_ner_roberta_model

This model is a fine-tuned version of klue/roberta-base on the klue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0487
  • Precision: 0.9546
  • Recall: 0.9557
  • F1: 0.9552
  • Accuracy: 0.9884

Model description

Pretrained RoBERTa Model on Korean Language. See Github and Paper for more details.

Intended uses & limitations

How to use

NOTE: Use BertTokenizer instead of RobertaTokenizer. (AutoTokenizer will load BertTokenizer)

from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("klue/roberta-base")
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base")

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0449 1.0 2626 0.0601 0.9361 0.9176 0.9267 0.9830
0.0262 2.0 5252 0.0469 0.9484 0.9510 0.9497 0.9874
0.0144 3.0 7878 0.0487 0.9546 0.9557 0.9552 0.9884

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3