Chuxin-Embedding / README.md
Chrislu's picture
Update README.md
6eb82a0 verified
|
raw
history blame
5.21 kB
metadata
{}

Chuxin-Embedding

Chuxin-Embedding 是专为增强中文文本检索能力而设计的嵌入模型。它基于bge-m3-retromae[1],实现了预训练、微调、精调全流程。该模型在来自各个领域的大量语料库上进行训练,语料库的批量非常大。截至 2024 年 9 月 14 日, Chuxin-Embedding 在检索任务中表现出色,在 C-MTEB 中文检索排行榜上排名第一,领先的性能得分为 77.88,在AIR-Bench中文检索+重排序公开排行榜上排名第一,领先的性能得分为 64.78。

News

  • 2024/9/14: LLM生成及数据清洗 Code coming soon 。
  • 2024/9/14: 团队的RAG框架欢迎试用 ragnify

Training Details

image/png 基于bge-m3-retromae[1],主要改动如下:

  • 基于bge-m3-retromae[1]在亿级数据上预训练。
    • 使用BGE pretrain Code 完成预训练。
  • 在收集的公开亿级检索数据集上实现了微调。
    • 使用BGE finetune Code 完成微调。
  • 在收集的公开百万级检索数据集和百万级LLM合成数据集上实现了精调。
    • 使用BGE finetune Code 和 BGE unified_finetune Code 完成精调。
    • 通过 LLM (QWEN-72B) 进行数据生成,使用 LLM 为message生成新query
    • 数据清洗:
      • 简单的基于规则清洗
      • LLM判断是否可作为搜索引擎查询的query
      • rerank模型对(query,message)评分,舍弃pos中的负例,neg中的正例

Collect more data for retrieval-type tasks

  1. 预训练数据
    • ChineseWebText、 oasis、 oscar、 SkyPile、 wudao
  2. 微调数据
    • MTP 、webqa、nlpcc、csl、bq、atec、ccks
  3. 精调数据
    • BGE-M3 、Huatuo26M-Lite 、covid ...
    • LLM 合成(BGE-M3 、Huatuo26M-Lite 、covid、wudao、wanjuan_news、mnbvc_news_wiki、mldr、medical QA...)

Performance

C_MTEB RETRIEVAL

Model Average CmedqaRetrieval CovidRetrieval DuRetrieval EcomRetrieval MedicalRetrieval MMarcoRetrieval T2Retrieval VideoRetrieval
Zhihui_LLM_Embedding 76.74 48.69 84.39 91.34 71.96 65.19 84.77 88.3 79.31
zpoint_large_embedding_zh 76.36 47.16 89.14 89.23 70.74 68.14 82.38 83.81 80.26
Chuxin-Embedding 77.88 56.58 84.28 85.65 74.01 75.62 79.06 84.04 83.84

AIR-Bench

Retrieval Method Reranking Model Average wiki_zh web_zh news_zh healthcare_zh finance_zh
bge-m3 bge-reranker-large 64.53 76.11 67.8 63.25 62.9 52.61
gte-Qwen2-7B-instruct bge-reranker-large 63.39 78.09 67.56 63.14 61.12 47.02
Chuxin-Embedding bge-reranker-large 64.78 76.23 68.44 64.2 62.93 52.11

Generate Embedding for text

from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('chuxin-llm/Chuxin-Embedding',  
                       use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-1"]

embeddings_1 = model.encode(sentences_1, 
                            batch_size=12, 
                            max_length=1024, 
                            )['dense_vecs']
embeddings_2 = model.encode(sentences_2)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

Reference

  1. https://huggingface.co/BAAI/bge-m3-retromae
  2. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3
  3. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding