layoutlm-funsd / README.md
cijo-uc's picture
End of training
3bca4dc verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3476
  • Answer: {'precision': 0.17894736842105263, 'recall': 0.3362175525339926, 'f1': 0.2335766423357664, 'number': 809}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.27942998760842624, 'recall': 0.42347417840375584, 'f1': 0.33669279581933553, 'number': 1065}
  • Overall Precision: 0.2307
  • Overall Recall: 0.3628
  • Overall F1: 0.2820
  • Overall Accuracy: 0.4351

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7432 1.0 10 1.5651 {'precision': 0.03228782287822878, 'recall': 0.04326328800988875, 'f1': 0.036978341257263604, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.18964259664478483, 'recall': 0.24413145539906103, 'f1': 0.2134646962233169, 'number': 1065} 0.1202 0.1480 0.1326 0.3666
1.5478 2.0 20 1.4279 {'precision': 0.13696715583508037, 'recall': 0.242274412855377, 'f1': 0.17500000000000002, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.25, 'recall': 0.3652582159624413, 'f1': 0.29683326974437235, 'number': 1065} 0.1958 0.2935 0.2349 0.4085
1.4112 3.0 30 1.3476 {'precision': 0.17894736842105263, 'recall': 0.3362175525339926, 'f1': 0.2335766423357664, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.27942998760842624, 'recall': 0.42347417840375584, 'f1': 0.33669279581933553, 'number': 1065} 0.2307 0.3628 0.2820 0.4351

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2