EnRuDR-BERT
EnRuDR-BERT - Multilingual, Cased, which pretrained on the raw part of the RuDReC corpus (1.4M reviews) and english collection of consumer comments on drug administration from [2]. Pre-training was based on the original BERT code provided by Google. In particular, Multi-BERT was for used for initialization; vocabulary of Russian subtokens and parameters are the same as in Multi-BERT. Training details are described in our paper.
link: https://yadi.sk/d/-PTn0xhk1PqvgQ
Citing & Authors
If you find this repository helpful, feel free to cite our publication:
[1] Tutubalina E, Alimova I, Miftahutdinov Z, et al. The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews.//Bioinformatics. - 2020.
preprint: https://arxiv.org/abs/2004.03659
@article{10.1093/bioinformatics/btaa675,
author = {Tutubalina, Elena and Alimova, Ilseyar and Miftahutdinov, Zulfat and Sakhovskiy, Andrey and Malykh, Valentin and Nikolenko, Sergey},
title = "{The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews}",
journal = {Bioinformatics},
year = {2020},
month = {07},
issn = {1367-4803},
doi = {10.1093/bioinformatics/btaa675},
url = {https://doi.org/10.1093/bioinformatics/btaa675},
note = {btaa675},
eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaa675/33539752/btaa675.pdf},
}
[2] Tutubalina, EV and Miftahutdinov, Z Sh and Nugmanov, RI and Madzhidov, TI and Nikolenko, SI and Alimova, IS and Tropsha, AE Using semantic analysis of texts for the identification of drugs with similar therapeutic effects.//Russian Chemical Bulletin. – 2017. – Т. 66. – №. 11. – С. 2180-2189. link to paper
@article{tutubalina2017using,
title={Using semantic analysis of texts for the identification of drugs with similar therapeutic effects},
author={Tutubalina, EV and Miftahutdinov, Z Sh and Nugmanov, RI and Madzhidov, TI and Nikolenko, SI and Alimova, IS and Tropsha, AE},
journal={Russian Chemical Bulletin},
volume={66},
number={11},
pages={2180--2189},
year={2017},
publisher={Springer}
}
- Downloads last month
- 11