Edit model card
  • this is 4bit 60B MoE model trained by SFTTrainer based on [cloudyu/4bit_quant_TomGrc_FusionNet_34Bx2_MoE_v0.1_DPO]

  • nampdn-ai/tiny-codes sampling about 2000 cases

  • Metrics not Test

    code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

model_path = "cloudyu/60B-MoE-Coder-v2"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.bfloat16, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=1500,repetition_penalty=1.1
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")
Downloads last month
70
Safetensors
Model size
31.8B params
Tensor type
BF16
F32
U8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.