Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +63 -303
sd_token_similarity_calculator.ipynb
CHANGED
@@ -125,56 +125,53 @@
|
|
125 |
"cell_type": "code",
|
126 |
"source": [
|
127 |
"# @title ⚡ Get similiar tokens\n",
|
|
|
128 |
"from transformers import AutoTokenizer\n",
|
129 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
130 |
"\n",
|
131 |
"# @markdown Write name of token to match against\n",
|
132 |
"prompt= \"banana\" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
133 |
-
"\n",
|
134 |
-
"tokenizer_output = tokenizer(text = prompt)\n",
|
135 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
136 |
-
"print(input_ids)\n",
|
137 |
-
"\n",
|
138 |
-
"\n",
|
139 |
-
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
140 |
-
"\n",
|
141 |
-
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
142 |
-
"\n",
|
143 |
-
"id_A = input_ids[1]\n",
|
144 |
-
"A = token[id_A]\n",
|
145 |
-
"_A = LA.vector_norm(A, ord=2)\n",
|
146 |
-
"\n",
|
147 |
-
"#if no imput exists we just randomize the entire thing\n",
|
148 |
-
"if (prompt == \"\"):\n",
|
149 |
-
" id_A = -1\n",
|
150 |
-
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
151 |
-
" R = torch.rand(768)\n",
|
152 |
-
" _R = LA.vector_norm(R, ord=2)\n",
|
153 |
-
" A = R*(_A/_R)\n",
|
154 |
-
" name_A = 'random_A'\n",
|
155 |
-
"\n",
|
156 |
"# @markdown (optional) Mix the token with something else\n",
|
157 |
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
158 |
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
159 |
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
160 |
-
"\n",
|
161 |
"# @markdown Limit char size of included token\n",
|
162 |
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
163 |
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
164 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
"tokenizer_output = tokenizer(text = mix_with)\n",
|
166 |
"input_ids = tokenizer_output['input_ids']\n",
|
167 |
"id_C = input_ids[1]\n",
|
168 |
-
"C = token[id_C]\n",
|
169 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
"\n",
|
171 |
"#if no imput exists we just randomize the entire thing\n",
|
172 |
"if (mix_with == \"\"):\n",
|
173 |
" id_C = -1\n",
|
174 |
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
175 |
-
" R = torch.rand(
|
176 |
-
"
|
177 |
-
" C = R
|
178 |
" name_C = 'random_C'\n",
|
179 |
"\n",
|
180 |
"name_A = \"A of random type\"\n",
|
@@ -185,16 +182,7 @@
|
|
185 |
"if (id_C>-1):\n",
|
186 |
" name_C = vocab[id_C]\n",
|
187 |
"\n",
|
188 |
-
"
|
189 |
-
"#peaks_A = get_valleys(A)\n",
|
190 |
-
"#peaks_C = get_valleys(C)\n",
|
191 |
-
"#print(f\"The elementwise top 10 highest values for A is at indices {peaks_A}\")\n",
|
192 |
-
"#print(\"-------\")\n",
|
193 |
-
"#print(f\"The elementwise top 10 highest values for C is at indices {peaks_C}\")\n",
|
194 |
-
"#print(\"-------\")\n",
|
195 |
-
"#//------//\n",
|
196 |
-
"\n",
|
197 |
-
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {token_similarity(A, C)}\")\n",
|
198 |
"\n",
|
199 |
"if (mix_method == \"None\"):\n",
|
200 |
" print(\"No operation\")\n",
|
@@ -206,10 +194,9 @@
|
|
206 |
"\n",
|
207 |
"if (mix_method == \"Subtract\"):\n",
|
208 |
" tmp = w*A - (1-w)*C\n",
|
209 |
-
"
|
210 |
-
" A =
|
211 |
" #//---//\n",
|
212 |
-
" _A = LA.vector_norm(A, ord=2)\n",
|
213 |
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
214 |
"\n",
|
215 |
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
@@ -217,12 +204,10 @@
|
|
217 |
"dots = torch.zeros(NUM_TOKENS)\n",
|
218 |
"for index in range(NUM_TOKENS):\n",
|
219 |
" id_B = index\n",
|
220 |
-
" B = token[id_B]\n",
|
221 |
-
"
|
222 |
-
"
|
223 |
-
"
|
224 |
-
" result = result.item()\n",
|
225 |
-
" dots[index] = result\n",
|
226 |
"\n",
|
227 |
"\n",
|
228 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
@@ -262,11 +247,14 @@
|
|
262 |
" if (print_Divider):\n",
|
263 |
" print('--------')\n",
|
264 |
"\n",
|
265 |
-
"#Print the sorted list from above result"
|
|
|
|
|
|
|
|
|
266 |
],
|
267 |
"metadata": {
|
268 |
-
"id": "iWeFnT1gAx6A"
|
269 |
-
"cellView": "form"
|
270 |
},
|
271 |
"execution_count": null,
|
272 |
"outputs": []
|
@@ -395,8 +383,6 @@
|
|
395 |
"\n",
|
396 |
"for index in range(RANGE):\n",
|
397 |
" id_C = START + index\n",
|
398 |
-
" C = token[id_C]\n",
|
399 |
-
" _C = LA.vector_norm(C, ord=2)\n",
|
400 |
" name_C = vocab[id_C]\n",
|
401 |
" is_Prefix = 0\n",
|
402 |
"\n",
|
@@ -591,10 +577,7 @@
|
|
591 |
"for index in range(NUM_PERMUTATIONS):\n",
|
592 |
" print(names[indices[index].item()])\n",
|
593 |
" print(f'similiarity = {round(sorted[index].item(),2)} %')\n",
|
594 |
-
" print('------')
|
595 |
-
"\n",
|
596 |
-
"\n",
|
597 |
-
"\n"
|
598 |
],
|
599 |
"metadata": {
|
600 |
"collapsed": true,
|
@@ -607,36 +590,36 @@
|
|
607 |
"cell_type": "code",
|
608 |
"source": [
|
609 |
"# @title 💫 Compare Text encodings\n",
|
610 |
-
"\n",
|
611 |
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
612 |
-
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
613 |
-
"use_token_padding = True #
|
614 |
-
"
|
|
|
|
|
|
|
|
|
615 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
616 |
-
"\n",
|
617 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
618 |
-
"\n",
|
619 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
620 |
-
"
|
621 |
-
"
|
622 |
-
"
|
623 |
-
"\n",
|
624 |
-
"\n",
|
625 |
-
"
|
626 |
-
"
|
627 |
-
"\n",
|
628 |
-
"
|
629 |
-
"\n",
|
630 |
-
"
|
631 |
-
"
|
632 |
-
"
|
633 |
-
"
|
634 |
-
"
|
635 |
],
|
636 |
"metadata": {
|
637 |
"id": "QQOjh5BvnG8M",
|
638 |
-
"collapsed": true
|
639 |
-
"cellView": "form"
|
640 |
},
|
641 |
"execution_count": null,
|
642 |
"outputs": []
|
@@ -650,229 +633,6 @@
|
|
650 |
"id": "hyK423TQCRup"
|
651 |
}
|
652 |
},
|
653 |
-
{
|
654 |
-
"cell_type": "markdown",
|
655 |
-
"source": [
|
656 |
-
"# ↓ Sub modules (use these to build your own projects) ↓"
|
657 |
-
],
|
658 |
-
"metadata": {
|
659 |
-
"id": "_d8WtPgtAymM"
|
660 |
-
}
|
661 |
-
},
|
662 |
-
{
|
663 |
-
"cell_type": "code",
|
664 |
-
"source": [
|
665 |
-
"# @title 📝 -> 🆔 Tokenize prompt into IDs\n",
|
666 |
-
"from transformers import AutoTokenizer\n",
|
667 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
668 |
-
"\n",
|
669 |
-
"prompt= \"banana\" # @param {type:'string'}\n",
|
670 |
-
"\n",
|
671 |
-
"tokenizer_output = tokenizer(text = prompt)\n",
|
672 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
673 |
-
"print(input_ids)\n",
|
674 |
-
"\n",
|
675 |
-
"\n",
|
676 |
-
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
677 |
-
"\n",
|
678 |
-
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
|
679 |
-
],
|
680 |
-
"metadata": {
|
681 |
-
"id": "RPdkYzT2_X85",
|
682 |
-
"cellView": "form"
|
683 |
-
},
|
684 |
-
"execution_count": null,
|
685 |
-
"outputs": []
|
686 |
-
},
|
687 |
-
{
|
688 |
-
"cell_type": "code",
|
689 |
-
"source": [
|
690 |
-
"# @title 🆔->🥢 Take the ID at index 1 from above result and get its corresponding tensor value\n",
|
691 |
-
"\n",
|
692 |
-
"id_A = input_ids[1]\n",
|
693 |
-
"A = token[id_A]\n",
|
694 |
-
"_A = LA.vector_norm(A, ord=2)\n",
|
695 |
-
"\n",
|
696 |
-
"#if no imput exists we just randomize the entire thing\n",
|
697 |
-
"if (prompt == \"\"):\n",
|
698 |
-
" id_A = -1\n",
|
699 |
-
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
700 |
-
" R = torch.rand(768)\n",
|
701 |
-
" _R = LA.vector_norm(R, ord=2)\n",
|
702 |
-
" A = R*(_A/_R)\n",
|
703 |
-
"\n",
|
704 |
-
"#Save a copy of the tensor A\n",
|
705 |
-
"id_P = id_A\n",
|
706 |
-
"P = A\n",
|
707 |
-
"_P = LA.vector_norm(A, ord=2)\n"
|
708 |
-
],
|
709 |
-
"metadata": {
|
710 |
-
"id": "YqdiF8DIz9Wu",
|
711 |
-
"cellView": "form"
|
712 |
-
},
|
713 |
-
"execution_count": null,
|
714 |
-
"outputs": []
|
715 |
-
},
|
716 |
-
{
|
717 |
-
"cell_type": "code",
|
718 |
-
"source": [
|
719 |
-
"# @title 🥢 -> 🥢🔀 Take the ID at index 1 from above result and modify it (optional)\n",
|
720 |
-
"mix_with = \"\" # @param {type:'string'}\n",
|
721 |
-
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
722 |
-
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
723 |
-
"\n",
|
724 |
-
"#------#\n",
|
725 |
-
"#If set to TRUE , this will use the output of this cell , tensor A, as the input of this cell the 2nd time we run it. Use this feature to mix many tokens into A\n",
|
726 |
-
"re_iterate_tensor_A = True # @param {\"type\":\"boolean\"}\n",
|
727 |
-
"if (re_iterate_tensor_A == False) :\n",
|
728 |
-
" #prevent re-iterating A by reading from stored copy\n",
|
729 |
-
" id_A = id_P\n",
|
730 |
-
" A = P\n",
|
731 |
-
" _A = _P\n",
|
732 |
-
"#----#\n",
|
733 |
-
"\n",
|
734 |
-
"tokenizer_output = tokenizer(text = mix_with)\n",
|
735 |
-
"input_ids = tokenizer_output['input_ids']\n",
|
736 |
-
"id_C = input_ids[1]\n",
|
737 |
-
"C = token[id_C]\n",
|
738 |
-
"_C = LA.vector_norm(C, ord=2)\n",
|
739 |
-
"\n",
|
740 |
-
"#if no imput exists we just randomize the entire thing\n",
|
741 |
-
"if (mix_with == \"\"):\n",
|
742 |
-
" id_C = -1\n",
|
743 |
-
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
744 |
-
" R = torch.rand(768)\n",
|
745 |
-
" _R = LA.vector_norm(R, ord=2)\n",
|
746 |
-
" C = R*(_C/_R)\n",
|
747 |
-
"\n",
|
748 |
-
"if (mix_method == \"None\"):\n",
|
749 |
-
" print(\"No operation\")\n",
|
750 |
-
"\n",
|
751 |
-
"if (mix_method == \"Average\"):\n",
|
752 |
-
" A = w*A + (1-w)*C\n",
|
753 |
-
" _A = LA.vector_norm(A, ord=2)\n",
|
754 |
-
" print(\"Tokenized prompt tensor A has been recalculated as A = w*A + (1-w)*C , where C is the tokenized prompt 'mix_with' tensor C\")\n",
|
755 |
-
"\n",
|
756 |
-
"if (mix_method == \"Subtract\"):\n",
|
757 |
-
" tmp = (A/_A) - (C/_C)\n",
|
758 |
-
" _tmp = LA.vector_norm(tmp, ord=2)\n",
|
759 |
-
" A = tmp*((w*_A + (1-w)*_C)/_tmp)\n",
|
760 |
-
" _A = LA.vector_norm(A, ord=2)\n",
|
761 |
-
" print(\"Tokenized prompt tensor A has been recalculated as A = (w*_A + (1-w)*_C) * norm(w*A - (1-w)*C) , where C is the tokenized prompt 'mix_with' tensor C\")\n",
|
762 |
-
"\n",
|
763 |
-
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor"
|
764 |
-
],
|
765 |
-
"metadata": {
|
766 |
-
"id": "oXbNSRSKPgRr",
|
767 |
-
"collapsed": true,
|
768 |
-
"cellView": "form"
|
769 |
-
},
|
770 |
-
"execution_count": null,
|
771 |
-
"outputs": []
|
772 |
-
},
|
773 |
-
{
|
774 |
-
"cell_type": "code",
|
775 |
-
"source": [
|
776 |
-
"\n",
|
777 |
-
"# @title 🥢->🧾🥢 Find Similiar Tokens to ID at index 1 from above result\n",
|
778 |
-
"dots = torch.zeros(NUM_TOKENS)\n",
|
779 |
-
"for index in range(NUM_TOKENS):\n",
|
780 |
-
" id_B = index\n",
|
781 |
-
" B = token[id_B]\n",
|
782 |
-
" _B = LA.vector_norm(B, ord=2)\n",
|
783 |
-
" result = torch.dot(A,B)/(_A*_B)\n",
|
784 |
-
" #result = absolute_value(result.item())\n",
|
785 |
-
" result = result.item()\n",
|
786 |
-
" dots[index] = result\n",
|
787 |
-
"\n",
|
788 |
-
"name_A = \"A of random type\"\n",
|
789 |
-
"if (id_A>-1):\n",
|
790 |
-
" name_A = vocab[id_A]\n",
|
791 |
-
"\n",
|
792 |
-
"name_C = \"token C of random type\"\n",
|
793 |
-
"if (id_C>-1):\n",
|
794 |
-
" name_C = vocab[id_C]\n",
|
795 |
-
"\n",
|
796 |
-
"\n",
|
797 |
-
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
798 |
-
"#----#\n",
|
799 |
-
"if (mix_method == \"Average\"):\n",
|
800 |
-
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
801 |
-
"if (mix_method == \"Subtract\"):\n",
|
802 |
-
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
803 |
-
"if (mix_method == \"None\"):\n",
|
804 |
-
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
805 |
-
"\n",
|
806 |
-
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result"
|
807 |
-
],
|
808 |
-
"metadata": {
|
809 |
-
"id": "juxsvco9B0iV",
|
810 |
-
"collapsed": true,
|
811 |
-
"cellView": "form"
|
812 |
-
},
|
813 |
-
"execution_count": null,
|
814 |
-
"outputs": []
|
815 |
-
},
|
816 |
-
{
|
817 |
-
"cell_type": "markdown",
|
818 |
-
"source": [],
|
819 |
-
"metadata": {
|
820 |
-
"id": "cYYu5C5C6MHH"
|
821 |
-
}
|
822 |
-
},
|
823 |
-
{
|
824 |
-
"cell_type": "code",
|
825 |
-
"source": [
|
826 |
-
"# @title 🥢🧾 -> 🖨️ Print Result from the 'Similiar Tokens' list from above result\n",
|
827 |
-
"list_size = 100 # @param {type:'number'}\n",
|
828 |
-
"print_ID = False # @param {type:\"boolean\"}\n",
|
829 |
-
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
830 |
-
"print_Name = True # @param {type:\"boolean\"}\n",
|
831 |
-
"print_Divider = True # @param {type:\"boolean\"}\n",
|
832 |
-
"\n",
|
833 |
-
"for index in range(list_size):\n",
|
834 |
-
" id = indices[index].item()\n",
|
835 |
-
" if (print_Name):\n",
|
836 |
-
" print(f'{vocab[id]}') # vocab item\n",
|
837 |
-
" if (print_ID):\n",
|
838 |
-
" print(f'ID = {id}') # IDs\n",
|
839 |
-
" if (print_Similarity):\n",
|
840 |
-
" print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n",
|
841 |
-
" if (print_Divider):\n",
|
842 |
-
" print('--------')\n",
|
843 |
-
"\n",
|
844 |
-
"#Print the sorted list from above result"
|
845 |
-
],
|
846 |
-
"metadata": {
|
847 |
-
"id": "YIEmLAzbHeuo",
|
848 |
-
"collapsed": true,
|
849 |
-
"cellView": "form"
|
850 |
-
},
|
851 |
-
"execution_count": null,
|
852 |
-
"outputs": []
|
853 |
-
},
|
854 |
-
{
|
855 |
-
"cell_type": "code",
|
856 |
-
"source": [
|
857 |
-
"\n",
|
858 |
-
"# @title 🆔 Get similarity % of two token IDs\n",
|
859 |
-
"id_for_token_A = 4567 # @param {type:'number'}\n",
|
860 |
-
"id_for_token_B = 4343 # @param {type:'number'}\n",
|
861 |
-
"\n",
|
862 |
-
"similarity_str = 'The similarity between tokens A and B is ' + similarity(id_for_token_A , id_for_token_B)\n",
|
863 |
-
"\n",
|
864 |
-
"print(similarity_str)\n",
|
865 |
-
"\n",
|
866 |
-
"#Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
|
867 |
-
],
|
868 |
-
"metadata": {
|
869 |
-
"id": "MwmOdC9cNZty",
|
870 |
-
"collapsed": true,
|
871 |
-
"cellView": "form"
|
872 |
-
},
|
873 |
-
"execution_count": null,
|
874 |
-
"outputs": []
|
875 |
-
},
|
876 |
{
|
877 |
"cell_type": "markdown",
|
878 |
"source": [
|
|
|
125 |
"cell_type": "code",
|
126 |
"source": [
|
127 |
"# @title ⚡ Get similiar tokens\n",
|
128 |
+
"import torch\n",
|
129 |
"from transformers import AutoTokenizer\n",
|
130 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
131 |
"\n",
|
132 |
"# @markdown Write name of token to match against\n",
|
133 |
"prompt= \"banana\" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
"# @markdown (optional) Mix the token with something else\n",
|
135 |
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
136 |
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
137 |
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
|
|
138 |
"# @markdown Limit char size of included token\n",
|
139 |
"min_char_size = 3 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
140 |
"char_range = 5 # @param {type:\"slider\", min:0, max: 50, step:1}\n",
|
141 |
"\n",
|
142 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
143 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
144 |
+
"id_A = input_ids[1]\n",
|
145 |
+
"A = torch.tensor(token[id_A])\n",
|
146 |
+
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
147 |
+
"#-----#\n",
|
148 |
"tokenizer_output = tokenizer(text = mix_with)\n",
|
149 |
"input_ids = tokenizer_output['input_ids']\n",
|
150 |
"id_C = input_ids[1]\n",
|
151 |
+
"C = torch.tensor(token[id_C])\n",
|
152 |
+
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
153 |
+
"#-----#\n",
|
154 |
+
"sim_AC = torch.dot(A,C)\n",
|
155 |
+
"#-----#\n",
|
156 |
+
"print(input_ids)\n",
|
157 |
+
"#-----#\n",
|
158 |
+
"\n",
|
159 |
+
"#if no imput exists we just randomize the entire thing\n",
|
160 |
+
"if (prompt == \"\"):\n",
|
161 |
+
" id_A = -1\n",
|
162 |
+
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
163 |
+
" R = torch.rand(A.shape)\n",
|
164 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
165 |
+
" A = R\n",
|
166 |
+
" name_A = 'random_A'\n",
|
167 |
"\n",
|
168 |
"#if no imput exists we just randomize the entire thing\n",
|
169 |
"if (mix_with == \"\"):\n",
|
170 |
" id_C = -1\n",
|
171 |
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
172 |
+
" R = torch.rand(A.shape)\n",
|
173 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
174 |
+
" C = R\n",
|
175 |
" name_C = 'random_C'\n",
|
176 |
"\n",
|
177 |
"name_A = \"A of random type\"\n",
|
|
|
182 |
"if (id_C>-1):\n",
|
183 |
" name_C = vocab[id_C]\n",
|
184 |
"\n",
|
185 |
+
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
"\n",
|
187 |
"if (mix_method == \"None\"):\n",
|
188 |
" print(\"No operation\")\n",
|
|
|
194 |
"\n",
|
195 |
"if (mix_method == \"Subtract\"):\n",
|
196 |
" tmp = w*A - (1-w)*C\n",
|
197 |
+
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
198 |
+
" A = tmp\n",
|
199 |
" #//---//\n",
|
|
|
200 |
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
201 |
"\n",
|
202 |
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
|
|
204 |
"dots = torch.zeros(NUM_TOKENS)\n",
|
205 |
"for index in range(NUM_TOKENS):\n",
|
206 |
" id_B = index\n",
|
207 |
+
" B = torch.tensor(token[id_B])\n",
|
208 |
+
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
209 |
+
" sim_AB = torch.dot(A,B)\n",
|
210 |
+
" dots[index] = sim_AB\n",
|
|
|
|
|
211 |
"\n",
|
212 |
"\n",
|
213 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
|
|
247 |
" if (print_Divider):\n",
|
248 |
" print('--------')\n",
|
249 |
"\n",
|
250 |
+
"#Print the sorted list from above result\n",
|
251 |
+
"\n",
|
252 |
+
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
253 |
+
"\n",
|
254 |
+
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
|
255 |
],
|
256 |
"metadata": {
|
257 |
+
"id": "iWeFnT1gAx6A"
|
|
|
258 |
},
|
259 |
"execution_count": null,
|
260 |
"outputs": []
|
|
|
383 |
"\n",
|
384 |
"for index in range(RANGE):\n",
|
385 |
" id_C = START + index\n",
|
|
|
|
|
386 |
" name_C = vocab[id_C]\n",
|
387 |
" is_Prefix = 0\n",
|
388 |
"\n",
|
|
|
577 |
"for index in range(NUM_PERMUTATIONS):\n",
|
578 |
" print(names[indices[index].item()])\n",
|
579 |
" print(f'similiarity = {round(sorted[index].item(),2)} %')\n",
|
580 |
+
" print('------')"
|
|
|
|
|
|
|
581 |
],
|
582 |
"metadata": {
|
583 |
"collapsed": true,
|
|
|
590 |
"cell_type": "code",
|
591 |
"source": [
|
592 |
"# @title 💫 Compare Text encodings\n",
|
|
|
593 |
"prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
594 |
+
"prompt_B = \"bike \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
595 |
+
"use_token_padding = True # param {type:\"boolean\"} <----- Enabled by default\n",
|
596 |
+
"#-----#\n",
|
597 |
+
"from transformers import AutoTokenizer\n",
|
598 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\",\n",
|
599 |
+
"clean_up_tokenization_spaces = False)\n",
|
600 |
+
"#-----#\n",
|
601 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
|
|
602 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
|
|
603 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
604 |
+
"#----#\n",
|
605 |
+
"inputs = tokenizer(text = prompt_A, padding=True, return_tensors=\"pt\")\n",
|
606 |
+
"text_features_A = model.get_text_features(**inputs)\n",
|
607 |
+
"text_features_A = text_features_A / text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
608 |
+
"name_A = prompt_A\n",
|
609 |
+
"#----#\n",
|
610 |
+
"inputs = tokenizer(text = prompt_B, padding=True, return_tensors=\"pt\")\n",
|
611 |
+
"text_features_B = model.get_text_features(**inputs)\n",
|
612 |
+
"text_features_B = text_features_B / text_features_B.norm(p=2, dim=-1, keepdim=True)\n",
|
613 |
+
"name_B = prompt_B\n",
|
614 |
+
"#----#\n",
|
615 |
+
"import torch\n",
|
616 |
+
"sim_AB = torch.nn.functional.cosine_similarity(text_features_A, text_features_B)\n",
|
617 |
+
"#----#\n",
|
618 |
+
"print(f'The similarity between the text_encoding for A:\"{prompt_A}\" and B: \"{prompt_B}\" is {round(sim_AB.item()*100,2)} %')"
|
619 |
],
|
620 |
"metadata": {
|
621 |
"id": "QQOjh5BvnG8M",
|
622 |
+
"collapsed": true
|
|
|
623 |
},
|
624 |
"execution_count": null,
|
625 |
"outputs": []
|
|
|
633 |
"id": "hyK423TQCRup"
|
634 |
}
|
635 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
{
|
637 |
"cell_type": "markdown",
|
638 |
"source": [
|