language:
- en
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- teknium/openhermes
model-index:
- name: TinyDolphin-2.8.2-1.1b-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 33.36
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 58.53
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.93
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.33
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.29
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/TinyDolphin-2.8.2-1.1b-laser
name: Open LLM Leaderboard
TinyDolphin-2.8.2-1.1b-laser
Join Our Discord! https://discord.gg/cognitivecomputations
This is an version 3 of a model trained on 3 3090's by Kearm on the new Dolphin 2.8 dataset by Eric Hartford https://erichartford.com/dolphin ๐ฌ
This model uses our laser technique from https://github.com/cognitivecomputations/laserRMT to denoise the model!
For this version we increased the epochs as well as refined the datasets used.
Example Outputs
TBD
Support my efforts! https://ko-fi.com/kearm
Orignal Model Card Below
TinyLlama-1.1B
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐๐. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
This Collection
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
Eval
Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
---|---|---|---|---|---|---|---|---|---|
Pythia-1.0B | 300B | 47.16 | 31.40 | 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80 | 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11 |
TinyLlama-1.1B-intermediate-step-240k-503b | 503B | 49.56 | 31.40 | 55.80 | 26.54 | 48.32 | 56.91 | 69.42 | 48.28 |
TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
TinyLlama-1.1B-intermediate-step-1195k-2.5T | 2.5T | 58.96 | 34.40 | 58.72 | 31.91 | 56.78 | 63.21 | 73.07 | 53.86 |
TinyLlama-1.1B-intermediate-step-1431k-3T | 3T | 59.20 | 36.00 | 59.12 | 30.12 | 55.25 | 57.83 | 73.29 | 52.99 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 35.93 |
AI2 Reasoning Challenge (25-Shot) | 33.36 |
HellaSwag (10-Shot) | 58.53 |
MMLU (5-Shot) | 25.93 |
TruthfulQA (0-shot) | 36.33 |
Winogrande (5-shot) | 60.14 |
GSM8k (5-shot) | 1.29 |