This is the cointegrated/rubert-tiny model fine-tuned for classification of toxicity and inappropriateness for short informal Russian texts, such as comments in social networks.
The problem is formulated as multilabel classification with the following classes:
non-toxic
: the text does NOT contain insults, obscenities, and threats, in the sense of the OK ML Cup competition.insult
obscenity
threat
dangerous
: the text is inappropriate, in the sense of Babakov et.al., i.e. it can harm the reputation of the speaker.
A text can be considered safe if it is BOTH non-toxic
and NOT dangerous
.
Usage
The function below estimates the probability that the text is either toxic OR dangerous:
# !pip install transformers sentencepiece --quiet
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_checkpoint = 'cointegrated/rubert-tiny-toxicity'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
if torch.cuda.is_available():
model.cuda()
def text2toxicity(text, aggregate=True):
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)"""
with torch.no_grad():
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()
if isinstance(text, str):
proba = proba[0]
if aggregate:
return 1 - proba.T[0] * (1 - proba.T[-1])
return proba
print(text2toxicity('я люблю нигеров', True))
# 0.9350118728093193
print(text2toxicity('я люблю нигеров', False))
# [0.9715758 0.0180863 0.0045551 0.00189755 0.9331106 ]
print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], True))
# [0.93501186 0.04156357]
print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], False))
# [[9.7157580e-01 1.8086294e-02 4.5550885e-03 1.8975559e-03 9.3311059e-01]
# [9.9979788e-01 1.9048342e-04 1.5297388e-04 1.7452303e-04 4.1369814e-02]]
Training
The model has been trained on the joint dataset of OK ML Cup and Babakov et.al. with Adam
optimizer, the learning rate of 1e-5
, and batch size of 64
for 15
epochs in this Colab notebook.
A text was considered inappropriate if its inappropriateness score was higher than 0.8, and appropriate - if it was lower than 0.2. The per-label ROC AUC on the dev set is:
non-toxic : 0.9937
insult : 0.9912
obscenity : 0.9881
threat : 0.9910
dangerous : 0.8295
- Downloads last month
- 7,862