File size: 1,334 Bytes
aafe4a6
50456b3
fa41512
 
e8c954c
eb40866
fa41512
 
 
5545537
f0c76db
da36afd
 
 
f0c76db
50456b3
f0c76db
eb40866
50456b3
 
 
fa41512
 
 
 
50456b3
fa41512
e8c954c
fa41512
 
 
 
 
 
50456b3
fa41512
 
 
50456b3
fa41512
eb40866
fa41512
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from diffusers import StableDiffusionXLPipeline, DDIMScheduler  # Import your desired scheduler
import base64
from io import BytesIO
import os

class InferenceHandler:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        model_name = "./"  # Use the current directory

        self.pipe = StableDiffusionXLPipeline.from_pretrained(
            model_name,
            torch_dtype=torch.float16,
            use_safetensors=True,
            use_auth_token=os.getenv("HUGGINGFACE_TOKEN")
        ).to(self.device)

        # Set the scheduler programmatically
        self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)

    def __call__(self, inputs):
        prompt = inputs.get("prompt", "")
        if not prompt:
            raise ValueError("A prompt must be provided")

        negative_prompt = inputs.get("negative_prompt", "")

        image = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            num_inference_steps=30,
            guidance_scale=7.5
        ).images[0]

        buffered = BytesIO()
        image.save(buffered, format="PNG")
        image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")

        return {"image_base64": image_base64}

handler = InferenceHandler()