Edit model card

Question Answering Generative

The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text.
Model is generative (t5-v1-base), fine-tuned from question-generation-auto-hints-t5-v1-base-s-q-c with - Loss: 0.6751 & Rougel: 0.8022 performance scores.

Live Demo: Question Answering Encoders vs Generative

Encoder based Question Answering V1
Encoder based Question Answering V2

Example code:

from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer
)

def _generate(query, context, model, device):
    
    FT_MODEL = AutoModelForSeq2SeqLM.from_pretrained(model).to(device)
    FT_MODEL_TOKENIZER = AutoTokenizer.from_pretrained(model)
    input_text = "question: " + query + "</s> question_context: " + context
    
    input_tokenized = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True, padding='max_length', max_length=1024).to(device)
    _tok_count_assessment = FT_MODEL_TOKENIZER.encode(input_text, return_tensors='pt', truncation=True).to(device)

    summary_ids = FT_MODEL.generate(input_tokenized, 
                                       max_length=30, 
                                       min_length=5, 
                                       num_beams=2,
                                       early_stopping=True,
                                   )
    output = [FT_MODEL_TOKENIZER.decode(id, clean_up_tokenization_spaces=True, skip_special_tokens=True) for id in summary_ids] 
    
    return str(output[0])

device = [0 if torch.cuda.is_available() else 'cpu'][0]
_generate(query, context, model="consciousAI/t5-v1-base-s-q-c-multi-task-qgen-v2", device=device)   

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.5479 1.0 14600 0.5104 0.7672 0.4898 0.7666 0.7666
0.3647 2.0 29200 0.5180 0.7862 0.4995 0.7855 0.7858
0.2458 3.0 43800 0.5302 0.7938 0.5039 0.7932 0.7935
0.1532 4.0 58400 0.6024 0.7989 0.514 0.7984 0.7984
0.0911 5.0 73000 0.6751 0.8028 0.5168 0.8022 0.8022

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.2
  • Tokenizers 0.13.0
Downloads last month
166
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using consciousAI/question-answering-generative-t5-v1-base-s-q-c 1