|
--- |
|
license: mit |
|
base_model: microsoft/layoutlm-base-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: layoutlm-cord-tf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlm-cord-tf |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0418 |
|
- Validation Loss: 0.1882 |
|
- Train Overall Precision: 0.9468 |
|
- Train Overall Recall: 0.9490 |
|
- Train Overall F1: 0.9479 |
|
- Train Overall Accuracy: 0.9652 |
|
- Epoch: 7 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |
|
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| |
|
| 1.3129 | 0.5622 | 0.8065 | 0.8120 | 0.8093 | 0.8579 | 0 | |
|
| 0.3927 | 0.2756 | 0.8965 | 0.8965 | 0.8965 | 0.9291 | 1 | |
|
| 0.2136 | 0.1945 | 0.9233 | 0.9254 | 0.9244 | 0.9499 | 2 | |
|
| 0.1335 | 0.1814 | 0.9363 | 0.9399 | 0.9381 | 0.9550 | 3 | |
|
| 0.0915 | 0.1956 | 0.9390 | 0.9482 | 0.9436 | 0.9571 | 4 | |
|
| 0.0810 | 0.2157 | 0.9392 | 0.9399 | 0.9395 | 0.9559 | 5 | |
|
| 0.0628 | 0.1726 | 0.9410 | 0.9467 | 0.9439 | 0.9618 | 6 | |
|
| 0.0418 | 0.1882 | 0.9468 | 0.9490 | 0.9479 | 0.9652 | 7 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0.dev0 |
|
- TensorFlow 2.16.1 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|