Edit model card

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5799
  • Precision: 0.8808
  • Recall: 0.9106
  • F1: 0.8955
  • Accuracy: 0.8507

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.3333 100 0.6686 0.7452 0.8251 0.7831 0.7535
No log 2.6667 200 0.4724 0.8064 0.8713 0.8376 0.8389
No log 4.0 300 0.4922 0.8612 0.8942 0.8774 0.8481
No log 5.3333 400 0.4632 0.8587 0.8997 0.8787 0.8521
0.544 6.6667 500 0.4850 0.8632 0.9031 0.8827 0.8474
0.544 8.0 600 0.5024 0.8744 0.8992 0.8866 0.8451
0.544 9.3333 700 0.5394 0.8768 0.9155 0.8957 0.8565
0.544 10.6667 800 0.5647 0.8800 0.9146 0.8970 0.8550
0.544 12.0 900 0.5798 0.8847 0.9106 0.8974 0.8545
0.1288 13.3333 1000 0.5799 0.8808 0.9106 0.8955 0.8507

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.1.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cor-c/test

Finetuned
(210)
this model

Evaluation results