|
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel |
|
from diffusers.utils import load_image |
|
from diffusers import ( |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
) |
|
import torch |
|
import os |
|
import random |
|
import numpy as np |
|
from PIL import Image |
|
from typing import Tuple |
|
import gradio as gr |
|
DESCRIPTION = """ |
|
# CosmicMan |
|
- CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight)) |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
schedule_map = { |
|
"ddim" : DDIMScheduler, |
|
"pndm" : PNDMScheduler, |
|
"lms" : LMSDiscreteScheduler, |
|
"euler" : EulerDiscreteScheduler, |
|
"euler_a": EulerAncestralDiscreteScheduler, |
|
"dpm" : DPMSolverMultistepScheduler, |
|
} |
|
|
|
examples = [ |
|
"A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot", |
|
"A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed", |
|
"A closeup of a girl with a butterfly painted on her face", |
|
"A headshot, an asian elderly male, a blue wall, bald above eyes gray hair", |
|
"A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse", |
|
"A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed", |
|
"A closeup of a man wearing a red shirt with a flower design on it", |
|
"There is a man wearing a mask and holding a cell phone", |
|
"Two boys playing in the yard", |
|
] |
|
|
|
style_list = [ |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
} |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "(No style)" |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
NUM_IMAGES_PER_PROMPT = 1 |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
class NoWatermark: |
|
def apply_watermark(self, img): |
|
return img |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
print("Loading Model!") |
|
schedule: str = "euler_a" |
|
base_model_path: str = "stabilityai/stable-diffusion-xl-base-1.0" |
|
refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0" |
|
unet_path: str = "cosmicman/CosmicMan-SDXL" |
|
SCHEDULER = schedule_map[schedule] |
|
scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler", torch_dtype=torch.float16) |
|
unet = UNet2DConditionModel.from_pretrained(unet_path, torch_dtype=torch.float16) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
base_model_path, |
|
unet=unet, |
|
scheduler=scheduler, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True |
|
).to("cuda") |
|
pipe.watermark = NoWatermark() |
|
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( |
|
base_model_path, |
|
scheduler=scheduler, |
|
torch_dtype=torch.float16, use_safetensors=True |
|
).to("cuda") |
|
refiner.watermark = NoWatermark() |
|
print("Finish Loading Model!") |
|
|
|
def generate_image(prompt, |
|
n_prompt="", |
|
style: str = DEFAULT_STYLE_NAME, |
|
steps: int = 50, |
|
height: int = 1024, |
|
width: int = 1024, |
|
scale: float = 7.5, |
|
img_num: int = 4, |
|
seeds: int = 42, |
|
random_seed: bool = False, |
|
): |
|
print("Beign to generate") |
|
image_list = [] |
|
for i in range(img_num): |
|
generator = torch.Generator(device="cuda") |
|
seed = int(randomize_seed_fn(seeds, random_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt) |
|
image = pipe(positive_prompt, num_inference_steps=steps, |
|
guidance_scale=scale, height=height, |
|
width=width, negative_prompt=negative_prompt, |
|
generator=generator, output_type="latent").images[0] |
|
image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0] |
|
image_list.append((image,f"Seed {seed}")) |
|
return image_list |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5) |
|
negative_prompt = gr.Textbox(label="Negative prompt",value="") |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto") |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Image Style", |
|
) |
|
with gr.Row(): |
|
height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64) |
|
width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64) |
|
with gr.Row(): |
|
steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1) |
|
scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale") |
|
with gr.Row(): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
random_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=input_prompt, |
|
outputs=result, |
|
fn=generate_image, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
input_prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate_image, |
|
inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed], |
|
outputs= result, |
|
api_name="run") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20) |
|
demo.launch(share=True, server_name='0.0.0.0', server_port=10057) |
|
|