Edit model card

distilbert-base-uncased-finetuned-ner-cadec-active

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3506
  • Precision: 0.5141
  • Recall: 0.5609
  • F1: 0.5365
  • Accuracy: 0.9010
  • Adr Precision: 0.4552
  • Adr Recall: 0.5683
  • Adr F1: 0.5055
  • Disease Precision: 0.0
  • Disease Recall: 0.0
  • Disease F1: 0.0
  • Drug Precision: 0.7659
  • Drug Recall: 0.8351
  • Drug F1: 0.7990
  • Finding Precision: 0.0
  • Finding Recall: 0.0
  • Finding F1: 0.0
  • Symptom Precision: 0.0
  • Symptom Recall: 0.0
  • Symptom F1: 0.0
  • B-adr Precision: 0.6573
  • B-adr Recall: 0.7339
  • B-adr F1: 0.6935
  • B-disease Precision: 0.0
  • B-disease Recall: 0.0
  • B-disease F1: 0.0
  • B-drug Precision: 0.9318
  • B-drug Recall: 0.8723
  • B-drug F1: 0.9011
  • B-finding Precision: 0.0
  • B-finding Recall: 0.0
  • B-finding F1: 0.0
  • B-symptom Precision: 0.0
  • B-symptom Recall: 0.0
  • B-symptom F1: 0.0
  • I-adr Precision: 0.4521
  • I-adr Recall: 0.5422
  • I-adr F1: 0.4931
  • I-disease Precision: 0.0
  • I-disease Recall: 0.0
  • I-disease F1: 0.0
  • I-drug Precision: 0.7960
  • I-drug Recall: 0.8556
  • I-drug F1: 0.8247
  • I-finding Precision: 0.0
  • I-finding Recall: 0.0
  • I-finding F1: 0.0
  • I-symptom Precision: 0.0
  • I-symptom Recall: 0.0
  • I-symptom F1: 0.0
  • Macro Avg F1: 0.2912
  • Weighted Avg F1: 0.5966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Adr Precision Adr Recall Adr F1 Disease Precision Disease Recall Disease F1 Drug Precision Drug Recall Drug F1 Finding Precision Finding Recall Finding F1 Symptom Precision Symptom Recall Symptom F1 B-adr Precision B-adr Recall B-adr F1 B-disease Precision B-disease Recall B-disease F1 B-drug Precision B-drug Recall B-drug F1 B-finding Precision B-finding Recall B-finding F1 B-symptom Precision B-symptom Recall B-symptom F1 I-adr Precision I-adr Recall I-adr F1 I-disease Precision I-disease Recall I-disease F1 I-drug Precision I-drug Recall I-drug F1 I-finding Precision I-finding Recall I-finding F1 I-symptom Precision I-symptom Recall I-symptom F1 Macro Avg F1 Weighted Avg F1
No log 1.0 26 0.6925 0.0 0.0 0.0 0.7877 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
No log 2.0 52 0.4818 0.3775 0.2508 0.3014 0.8527 0.2356 0.1788 0.2033 0.0 0.0 0.0 0.9606 0.6489 0.7746 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9841 0.6596 0.7898 0.0 0.0 0.0 0.0 0.0 0.0 0.0632 0.0592 0.0612 0.0 0.0 0.0 0.9685 0.6578 0.7834 0.0 0.0 0.0 0.0 0.0 0.0 0.1634 0.1890
No log 3.0 78 0.4090 0.3740 0.3234 0.3469 0.8761 0.2779 0.2747 0.2763 0.0 0.0 0.0 0.7697 0.6755 0.7195 0.0 0.0 0.0 0.0 0.0 0.0 0.6431 0.2583 0.3685 0.0 0.0 0.0 0.9524 0.7447 0.8358 0.0 0.0 0.0 0.0 0.0 0.0 0.1645 0.1813 0.1725 0.0 0.0 0.0 0.8375 0.7166 0.7723 0.0 0.0 0.0 0.0 0.0 0.0 0.2149 0.3628
No log 4.0 104 0.3834 0.4128 0.3562 0.3824 0.8813 0.3096 0.3038 0.3067 0.0 0.0 0.0 0.8274 0.7394 0.7809 0.0 0.0 0.0 0.0 0.0 0.0 0.6346 0.4047 0.4942 0.0 0.0 0.0 0.9664 0.7660 0.8546 0.0 0.0 0.0 0.0 0.0 0.0 0.2382 0.2442 0.2411 0.0 0.0 0.0 0.8735 0.7754 0.8215 0.0 0.0 0.0 0.0 0.0 0.0 0.2411 0.4379
No log 5.0 130 0.3587 0.4437 0.4882 0.4649 0.8960 0.3705 0.4782 0.4175 0.0 0.0 0.0 0.7914 0.7872 0.7893 0.0 0.0 0.0 0.0 0.0 0.0 0.6234 0.6803 0.6506 0.0 0.0 0.0 0.9682 0.8085 0.8812 0.0 0.0 0.0 0.0 0.0 0.0 0.3689 0.4345 0.3990 0.0 0.0 0.0 0.8065 0.8021 0.8043 0.0 0.0 0.0 0.0 0.0 0.0 0.2735 0.5465
No log 6.0 156 0.3549 0.4600 0.5005 0.4794 0.8960 0.3876 0.4913 0.4333 0.0 0.0 0.0 0.7906 0.8032 0.7968 0.0 0.0 0.0 0.0 0.0 0.0 0.6281 0.7102 0.6667 0.0 0.0 0.0 0.9625 0.8191 0.8851 0.0 0.0 0.0 0.0 0.0 0.0 0.3861 0.4596 0.4197 0.0 0.0 0.0 0.8211 0.8342 0.8276 0.0 0.0 0.0 0.0 0.0 0.0 0.2799 0.5619
No log 7.0 182 0.3583 0.4842 0.5333 0.5075 0.9013 0.4205 0.5305 0.4692 0.0 0.0 0.0 0.75 0.8298 0.7879 0.0 0.0 0.0 0.0 0.0 0.0 0.6412 0.7260 0.6809 0.0 0.0 0.0 0.9310 0.8617 0.8950 0.0 0.0 0.0 0.0 0.0 0.0 0.4238 0.4794 0.4499 0.0 0.0 0.0 0.7892 0.8610 0.8235 0.0 0.0 0.0 0.0 0.0 0.0 0.2849 0.5774
No log 8.0 208 0.3442 0.4954 0.5455 0.5192 0.8986 0.4320 0.5451 0.4820 0.0 0.0 0.0 0.7670 0.8404 0.8020 0.0 0.0 0.0 0.0 0.0 0.0 0.6561 0.7150 0.6843 0.0 0.0 0.0 0.9326 0.8830 0.9071 0.0 0.0 0.0 0.0 0.0 0.0 0.4279 0.5224 0.4705 0.0 0.0 0.0 0.8010 0.8610 0.8299 0.0 0.0 0.0 0.0 0.0 0.0 0.2892 0.5872
No log 9.0 234 0.3499 0.5075 0.5517 0.5287 0.9003 0.4480 0.5567 0.4964 0.0 0.0 0.0 0.7610 0.8298 0.7939 0.0 0.0 0.0 0.0 0.0 0.0 0.6585 0.7228 0.6892 0.0 0.0 0.0 0.9314 0.8670 0.8981 0.0 0.0 0.0 0.0 0.0 0.0 0.4466 0.5404 0.4890 0.0 0.0 0.0 0.7960 0.8556 0.8247 0.0 0.0 0.0 0.0 0.0 0.0 0.2901 0.5934
No log 10.0 260 0.3506 0.5141 0.5609 0.5365 0.9010 0.4552 0.5683 0.5055 0.0 0.0 0.0 0.7659 0.8351 0.7990 0.0 0.0 0.0 0.0 0.0 0.0 0.6573 0.7339 0.6935 0.0 0.0 0.0 0.9318 0.8723 0.9011 0.0 0.0 0.0 0.0 0.0 0.0 0.4521 0.5422 0.4931 0.0 0.0 0.0 0.7960 0.8556 0.8247 0.0 0.0 0.0 0.0 0.0 0.0 0.2912 0.5966

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csNoHug/distilbert-base-uncased-finetuned-ner-cadec-active

Finetuned
(6692)
this model