Edit model card

roberta-base-finetuned-ner-cadec-no-iob

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4142
  • Precision: 0.6452
  • Recall: 0.6860
  • F1: 0.6650
  • Accuracy: 0.9380
  • Adr Precision: 0.5911
  • Adr Recall: 0.6557
  • Adr F1: 0.6217
  • Disease Precision: 0.4138
  • Disease Recall: 0.375
  • Disease F1: 0.3934
  • Drug Precision: 0.8962
  • Drug Recall: 0.9111
  • Drug F1: 0.9036
  • Finding Precision: 0.375
  • Finding Recall: 0.375
  • Finding F1: 0.375
  • Symptom Precision: 0.5833
  • Symptom Recall: 0.4828
  • Symptom F1: 0.5283
  • Macro Avg F1: 0.5644
  • Weighted Avg F1: 0.6650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Adr Precision Adr Recall Adr F1 Disease Precision Disease Recall Disease F1 Drug Precision Drug Recall Drug F1 Finding Precision Finding Recall Finding F1 Symptom Precision Symptom Recall Symptom F1 Macro Avg F1 Weighted Avg F1
No log 1.0 125 0.2142 0.5325 0.6055 0.5667 0.9194 0.4548 0.5918 0.5143 0.4186 0.5625 0.48 0.8398 0.8444 0.8421 0.2857 0.0625 0.1026 0.0 0.0 0.0 0.3878 0.5537
No log 2.0 250 0.1798 0.6083 0.6557 0.6311 0.9339 0.5276 0.6309 0.5746 0.6842 0.4062 0.5098 0.8950 0.9 0.8975 0.32 0.25 0.2807 0.6667 0.2759 0.3902 0.5306 0.6291
No log 3.0 375 0.1910 0.5748 0.6029 0.5885 0.9282 0.5191 0.5320 0.5255 0.6 0.375 0.4615 0.8820 0.8722 0.8771 0.2927 0.375 0.3288 0.3051 0.6207 0.4091 0.5204 0.5935
0.1902 4.0 500 0.2013 0.5995 0.6398 0.6190 0.9311 0.5460 0.6 0.5717 0.25 0.0938 0.1364 0.8840 0.8889 0.8864 0.2632 0.4688 0.3371 0.6154 0.5517 0.5818 0.5027 0.6185
0.1902 5.0 625 0.2113 0.6161 0.6649 0.6396 0.9335 0.5515 0.6289 0.5877 0.5556 0.4688 0.5085 0.8852 0.9 0.8926 0.2857 0.25 0.2667 0.5185 0.4828 0.5 0.5511 0.6398
0.1902 6.0 750 0.1955 0.6223 0.6544 0.6379 0.9341 0.5541 0.6021 0.5771 0.5833 0.4375 0.5 0.8956 0.9056 0.9006 0.2857 0.375 0.3243 0.6818 0.5172 0.5882 0.5780 0.6404
0.1902 7.0 875 0.2226 0.6252 0.6491 0.6369 0.9343 0.5671 0.6186 0.5917 0.5556 0.1562 0.2439 0.8983 0.8833 0.8908 0.3061 0.4688 0.3704 0.5652 0.4483 0.5000 0.5193 0.6352
0.0648 8.0 1000 0.2345 0.6229 0.6755 0.6481 0.9363 0.5773 0.6392 0.6067 0.4138 0.375 0.3934 0.875 0.8944 0.8846 0.2973 0.3438 0.3188 0.5143 0.6207 0.5625 0.5532 0.6498
0.0648 9.0 1125 0.2316 0.6322 0.6689 0.65 0.9368 0.5851 0.6309 0.6071 0.5 0.3125 0.3846 0.8811 0.9056 0.8932 0.2766 0.4062 0.3291 0.5556 0.5172 0.5357 0.5499 0.6512
0.0648 10.0 1250 0.2944 0.6204 0.6491 0.6344 0.9320 0.5551 0.6021 0.5776 0.5789 0.3438 0.4314 0.8913 0.9111 0.9011 0.2619 0.3438 0.2973 0.6364 0.4828 0.5490 0.5513 0.6353
0.0648 11.0 1375 0.2660 0.6280 0.6794 0.6527 0.9353 0.5786 0.6454 0.6101 0.3824 0.4062 0.3939 0.8956 0.9056 0.9006 0.2812 0.2812 0.2812 0.5484 0.5862 0.5667 0.5505 0.6544
0.0284 12.0 1500 0.2819 0.6366 0.6702 0.6530 0.9355 0.5827 0.6392 0.6096 0.5 0.1875 0.2727 0.8956 0.9056 0.9006 0.3478 0.5 0.4103 0.5 0.4483 0.4727 0.5332 0.6508
0.0284 13.0 1625 0.3000 0.6326 0.6702 0.6509 0.9363 0.5736 0.6351 0.6027 0.4444 0.375 0.4068 0.8950 0.9 0.8975 0.3421 0.4062 0.3714 0.65 0.4483 0.5306 0.5618 0.6519
0.0284 14.0 1750 0.2996 0.6228 0.6491 0.6357 0.9363 0.5645 0.6041 0.5837 0.4783 0.3438 0.4 0.8743 0.8889 0.8815 0.2973 0.3438 0.3188 0.6071 0.5862 0.5965 0.5561 0.6360
0.0284 15.0 1875 0.3246 0.6311 0.6636 0.6469 0.9352 0.5788 0.6206 0.5990 0.45 0.2812 0.3462 0.9056 0.9056 0.9056 0.2683 0.3438 0.3014 0.5278 0.6552 0.5846 0.5473 0.6480
0.0136 16.0 2000 0.3305 0.6461 0.6623 0.6541 0.9377 0.5869 0.6268 0.6062 0.4545 0.3125 0.3704 0.9011 0.9111 0.9061 0.3448 0.3125 0.3279 0.5385 0.4828 0.5091 0.5439 0.6520
0.0136 17.0 2125 0.3181 0.6291 0.6781 0.6527 0.9375 0.5780 0.6495 0.6117 0.4231 0.3438 0.3793 0.9066 0.9167 0.9116 0.2857 0.3125 0.2985 0.4483 0.4483 0.4483 0.5299 0.6536
0.0136 18.0 2250 0.3414 0.6298 0.6755 0.6518 0.9362 0.5765 0.6371 0.6053 0.375 0.375 0.375 0.8962 0.9111 0.9036 0.3235 0.3438 0.3333 0.5714 0.5517 0.5614 0.5557 0.6532
0.0136 19.0 2375 0.3457 0.6302 0.6768 0.6527 0.9372 0.5877 0.6495 0.6170 0.3636 0.25 0.2963 0.8907 0.9056 0.8981 0.26 0.4062 0.3171 0.6087 0.4828 0.5385 0.5334 0.6546
0.0078 20.0 2500 0.3700 0.6367 0.6636 0.6499 0.9367 0.5805 0.6247 0.6018 0.3714 0.4062 0.3881 0.9016 0.9167 0.9091 0.3077 0.25 0.2759 0.5833 0.4828 0.5283 0.5406 0.6492
0.0078 21.0 2625 0.3772 0.6276 0.6715 0.6488 0.9325 0.5766 0.6289 0.6016 0.44 0.3438 0.3860 0.8919 0.9167 0.9041 0.2927 0.375 0.3288 0.5161 0.5517 0.5333 0.5508 0.6502
0.0078 22.0 2750 0.3622 0.6389 0.6768 0.6573 0.9345 0.5855 0.6495 0.6158 0.4333 0.4062 0.4194 0.8840 0.8889 0.8864 0.3333 0.3125 0.3226 0.625 0.5172 0.5660 0.5620 0.6575
0.0078 23.0 2875 0.3811 0.6304 0.6728 0.6509 0.9352 0.5765 0.6371 0.6053 0.4 0.375 0.3871 0.8804 0.9 0.8901 0.3438 0.3438 0.3438 0.5926 0.5517 0.5714 0.5595 0.6514
0.005 24.0 3000 0.3824 0.6322 0.6689 0.65 0.9353 0.5757 0.6351 0.6039 0.4286 0.375 0.4000 0.8901 0.9 0.8950 0.3226 0.3125 0.3175 0.5769 0.5172 0.5455 0.5524 0.6501
0.005 25.0 3125 0.3821 0.6297 0.6821 0.6548 0.9375 0.5850 0.6598 0.6202 0.4 0.375 0.3871 0.8852 0.9 0.8926 0.25 0.2812 0.2647 0.56 0.4828 0.5185 0.5366 0.6561
0.005 26.0 3250 0.4058 0.6292 0.6715 0.6496 0.9355 0.5821 0.6433 0.6112 0.3939 0.4062 0.4 0.875 0.8944 0.8846 0.2857 0.25 0.2667 0.5357 0.5172 0.5263 0.5378 0.6494
0.005 27.0 3375 0.3980 0.6262 0.6807 0.6523 0.9369 0.5743 0.6536 0.6114 0.4074 0.3438 0.3729 0.8798 0.8944 0.8871 0.3333 0.375 0.3529 0.5769 0.5172 0.5455 0.5539 0.6533
0.0031 28.0 3500 0.4100 0.6305 0.6755 0.6522 0.9351 0.5762 0.6392 0.6061 0.4074 0.3438 0.3729 0.8962 0.9111 0.9036 0.3421 0.4062 0.3714 0.5385 0.4828 0.5091 0.5526 0.6533
0.0031 29.0 3625 0.4050 0.6383 0.6939 0.6650 0.9388 0.5916 0.6660 0.6266 0.44 0.3438 0.3860 0.8913 0.9111 0.9011 0.3095 0.4062 0.3514 0.5556 0.5172 0.5357 0.5601 0.6665
0.0031 30.0 3750 0.4111 0.6348 0.6741 0.6539 0.9367 0.5819 0.6371 0.6083 0.4138 0.375 0.3934 0.8962 0.9111 0.9036 0.3243 0.375 0.3478 0.56 0.4828 0.5185 0.5543 0.6549
0.0031 31.0 3875 0.4074 0.6349 0.6768 0.6552 0.9381 0.5832 0.6433 0.6118 0.3846 0.3125 0.3448 0.8962 0.9111 0.9036 0.3333 0.4062 0.3662 0.56 0.4828 0.5185 0.5490 0.6559
0.002 32.0 4000 0.4086 0.6421 0.6794 0.6603 0.9379 0.5843 0.6433 0.6124 0.4138 0.375 0.3934 0.9016 0.9167 0.9091 0.375 0.375 0.375 0.5833 0.4828 0.5283 0.5636 0.6603
0.002 33.0 4125 0.4174 0.6378 0.6900 0.6629 0.9369 0.5847 0.6619 0.6209 0.4074 0.3438 0.3729 0.9022 0.9222 0.9121 0.3235 0.3438 0.3333 0.5385 0.4828 0.5091 0.5497 0.6632
0.002 34.0 4250 0.4131 0.6431 0.6847 0.6633 0.9379 0.5881 0.6536 0.6191 0.4138 0.375 0.3934 0.8962 0.9111 0.9036 0.375 0.375 0.375 0.5833 0.4828 0.5283 0.5639 0.6634
0.002 35.0 4375 0.4142 0.6452 0.6860 0.6650 0.9380 0.5911 0.6557 0.6217 0.4138 0.375 0.3934 0.8962 0.9111 0.9036 0.375 0.375 0.375 0.5833 0.4828 0.5283 0.5644 0.6650

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csNoHug/roberta-base-finetuned-ner-cadec-no-iob

Finetuned
(1285)
this model