Spaetzle-v12-7b / README.md
cstr's picture
Update README.md
68446c6 verified
|
raw
history blame
7.46 kB
---
tags:
- merge
- mergekit
- lazymergekit
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
base_model:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
license: cc-by-sa-4.0
---
# Spaetzle-v12-7b
Spaetzle-v12-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B)
* [Blizado/discolm-mfto-7b-german-v0.1](https://huggingface.co/Blizado/discolm-mfto-7b-german-v0.1)
* [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B)
* on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser)
As expected, this is a little bit worse in general English tasks over [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b), but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de)
score of 64.81, but only
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.36|
|AI2 Reasoning Challenge (25-Shot)|65.96|
|HellaSwag (10-Shot) |86.16|
|MMLU (5-Shot) |63.48|
|TruthfulQA (0-shot) |57.84|
|Winogrande (5-shot) |80.03|
|GSM8k (5-shot) |62.70|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v12-7b](https://huggingface.co/cstr/Spaetzle-v12-7b)| 42.64| 74.3| 58.44| 44.44| 54.95|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |24.02|± | 2.69|
| | |acc_norm|21.65|± | 2.59|
|agieval_logiqa_en | 0|acc |36.10|± | 1.88|
| | |acc_norm|37.63|± | 1.90|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
| | |acc_norm|23.04|± | 2.78|
|agieval_lsat_lr | 0|acc |48.82|± | 2.22|
| | |acc_norm|47.25|± | 2.21|
|agieval_lsat_rc | 0|acc |60.59|± | 2.98|
| | |acc_norm|57.99|± | 3.01|
|agieval_sat_en | 0|acc |76.21|± | 2.97|
| | |acc_norm|74.76|± | 3.03|
|agieval_sat_en_without_passage| 0|acc |46.60|± | 3.48|
| | |acc_norm|45.63|± | 3.48|
|agieval_sat_math | 0|acc |37.27|± | 3.27|
| | |acc_norm|33.18|± | 3.18|
Average: 42.64%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |59.13|± | 1.44|
| | |acc_norm|61.26|± | 1.42|
|arc_easy | 0|acc |83.67|± | 0.76|
| | |acc_norm|80.89|± | 0.81|
|boolq | 1|acc |87.83|± | 0.57|
|hellaswag | 0|acc |66.45|± | 0.47|
| | |acc_norm|84.63|± | 0.36|
|openbookqa | 0|acc |37.40|± | 2.17|
| | |acc_norm|45.80|± | 2.23|
|piqa | 0|acc |82.15|± | 0.89|
| | |acc_norm|83.13|± | 0.87|
|winogrande | 0|acc |76.56|± | 1.19|
Average: 74.3%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |42.59|± | 1.73|
| | |mc2 |58.44|± | 1.58|
Average: 58.44%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|55.26|± | 3.62|
|bigbench_date_understanding | 0|multiple_choice_grade|64.77|± | 2.49|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|37.60|± | 3.02|
|bigbench_geometric_shapes | 0|multiple_choice_grade|32.31|± | 2.47|
| | |exact_str_match |21.45|± | 2.17|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.00|± | 2.07|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.43|± | 1.58|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|53.00|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|40.40|± | 2.20|
|bigbench_navigate | 0|multiple_choice_grade|51.30|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|68.50|± | 1.04|
|bigbench_ruin_names | 0|multiple_choice_grade|48.66|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.36|± | 1.46|
|bigbench_snarks | 0|multiple_choice_grade|70.17|± | 3.41|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.39|± | 1.45|
|bigbench_temporal_sequences | 0|multiple_choice_grade|31.00|± | 1.46|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.44|± | 1.16|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.29|± | 0.92|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|53.00|± | 2.89|
Average: 44.44%
Average score: 54.95%
Elapsed time: 02:50:51
## 🧩 Configuration
```yaml
models:
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
# no parameters necessary for base model
- model: flemmingmiguel/NeuDist-Ro-7B
parameters:
density: 0.60
weight: 0.30
- model: Blizado/discolm-mfto-7b-german-v0.1
parameters:
density: 0.65
weight: 0.40
- model: ResplendentAI/Flora_DPO_7B
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v12-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```