|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- flemmingmiguel/NeuDist-Ro-7B |
|
- Blizado/discolm-mfto-7b-german-v0.1 |
|
- ResplendentAI/Flora_DPO_7B |
|
base_model: |
|
- flemmingmiguel/NeuDist-Ro-7B |
|
- Blizado/discolm-mfto-7b-german-v0.1 |
|
- ResplendentAI/Flora_DPO_7B |
|
license: cc-by-sa-4.0 |
|
--- |
|
|
|
# Spaetzle-v12-7b |
|
|
|
Spaetzle-v12-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B) |
|
* [Blizado/discolm-mfto-7b-german-v0.1](https://huggingface.co/Blizado/discolm-mfto-7b-german-v0.1) |
|
* [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B) |
|
* on the basis of [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser) |
|
|
|
As expected, this is a little bit worse in general English tasks over [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b), but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de) |
|
score of 64.81, but only |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |69.36| |
|
|AI2 Reasoning Challenge (25-Shot)|65.96| |
|
|HellaSwag (10-Shot) |86.16| |
|
|MMLU (5-Shot) |63.48| |
|
|TruthfulQA (0-shot) |57.84| |
|
|Winogrande (5-shot) |80.03| |
|
|GSM8k (5-shot) |62.70| |
|
|
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[Spaetzle-v12-7b](https://huggingface.co/cstr/Spaetzle-v12-7b)| 42.64| 74.3| 58.44| 44.44| 54.95| |
|
|
|
### AGIEval |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |24.02|± | 2.69| |
|
| | |acc_norm|21.65|± | 2.59| |
|
|agieval_logiqa_en | 0|acc |36.10|± | 1.88| |
|
| | |acc_norm|37.63|± | 1.90| |
|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84| |
|
| | |acc_norm|23.04|± | 2.78| |
|
|agieval_lsat_lr | 0|acc |48.82|± | 2.22| |
|
| | |acc_norm|47.25|± | 2.21| |
|
|agieval_lsat_rc | 0|acc |60.59|± | 2.98| |
|
| | |acc_norm|57.99|± | 3.01| |
|
|agieval_sat_en | 0|acc |76.21|± | 2.97| |
|
| | |acc_norm|74.76|± | 3.03| |
|
|agieval_sat_en_without_passage| 0|acc |46.60|± | 3.48| |
|
| | |acc_norm|45.63|± | 3.48| |
|
|agieval_sat_math | 0|acc |37.27|± | 3.27| |
|
| | |acc_norm|33.18|± | 3.18| |
|
|
|
Average: 42.64% |
|
|
|
### GPT4All |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |59.13|± | 1.44| |
|
| | |acc_norm|61.26|± | 1.42| |
|
|arc_easy | 0|acc |83.67|± | 0.76| |
|
| | |acc_norm|80.89|± | 0.81| |
|
|boolq | 1|acc |87.83|± | 0.57| |
|
|hellaswag | 0|acc |66.45|± | 0.47| |
|
| | |acc_norm|84.63|± | 0.36| |
|
|openbookqa | 0|acc |37.40|± | 2.17| |
|
| | |acc_norm|45.80|± | 2.23| |
|
|piqa | 0|acc |82.15|± | 0.89| |
|
| | |acc_norm|83.13|± | 0.87| |
|
|winogrande | 0|acc |76.56|± | 1.19| |
|
|
|
Average: 74.3% |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |42.59|± | 1.73| |
|
| | |mc2 |58.44|± | 1.58| |
|
|
|
Average: 58.44% |
|
|
|
### Bigbench |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|55.26|± | 3.62| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|64.77|± | 2.49| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|37.60|± | 3.02| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|32.31|± | 2.47| |
|
| | |exact_str_match |21.45|± | 2.17| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.00|± | 2.07| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.43|± | 1.58| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|53.00|± | 2.89| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|40.40|± | 2.20| |
|
|bigbench_navigate | 0|multiple_choice_grade|51.30|± | 1.58| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|68.50|± | 1.04| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|48.66|± | 2.36| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.36|± | 1.46| |
|
|bigbench_snarks | 0|multiple_choice_grade|70.17|± | 3.41| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.39|± | 1.45| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|31.00|± | 1.46| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.44|± | 1.16| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.29|± | 0.92| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|53.00|± | 2.89| |
|
|
|
Average: 44.44% |
|
|
|
Average score: 54.95% |
|
|
|
Elapsed time: 02:50:51 |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser |
|
# no parameters necessary for base model |
|
- model: flemmingmiguel/NeuDist-Ro-7B |
|
parameters: |
|
density: 0.60 |
|
weight: 0.30 |
|
- model: Blizado/discolm-mfto-7b-german-v0.1 |
|
parameters: |
|
density: 0.65 |
|
weight: 0.40 |
|
- model: ResplendentAI/Flora_DPO_7B |
|
parameters: |
|
density: 0.6 |
|
weight: 0.3 |
|
merge_method: dare_ties |
|
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
random_seed: 0 |
|
tokenizer_source: base |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "cstr/Spaetzle-v12-7b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |