cstr
/

Automatic Speech Recognition
Transformers
German
Eval Results
Inference Endpoints
cstr's picture
Update README.md
8f8dd24 verified
---
license: apache-2.0
language:
- de
library_name: transformers
pipeline_tag: automatic-speech-recognition
model-index:
- name: whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: German ASR Data-Mix
type: flozi00/asr-german-mixed
metrics:
- type: wer
value: 4.77 %
name: Test WER
datasets:
- flozi00/asr-german-mixed
- flozi00/asr-german-mixed-evals
base_model:
- primeline/whisper-large-v3-german
---
## Quant
This is only a int8 quantization from [primeline/whisper-large-v3-turbo-german](https://huggingface.co/primeline/whisper-large-v3-turbo-german) per ctranslate2-converter, for usage e.g. in ctranslate2, faster-whisper, etc.
## Modelcard from primeline/whisper-large-v3-german
### Summary
This model map provides information about a model based on Whisper Large v3 that has been fine-tuned for speech recognition in German. Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for processing and recognizing German speech.
### Applications
This model can be used in various application areas, including
- Transcription of spoken German language
- Voice commands and voice control
- Automatic subtitling for German videos
- Voice-based search queries in German
- Dictation functions in word processing programs
## Model family
| Model | Parameters | link |
|----------------------------------|------------|--------------------------------------------------------------|
| Whisper large v3 german | 1.54B | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
| Whisper large v3 turbo german | 809M | [link](https://huggingface.co/primeline/whisper-large-v3-turbo-german)
| Distil-whisper large v3 german | 756M | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
| tiny whisper | 37.8M | [link](https://huggingface.co/primeline/whisper-tiny-german) |
## Evaluations
| Dataset | openai-whisper-large-v3-turbo | openai-whisper-large-v3 | primeline-whisper-large-v3-german | nyrahealth-CrisperWhisper | primeline-whisper-large-v3-turbo-german |
|---------------------------------|-------------------------------|-------------------------|----------------------------------|---------------------------|----------------------------------------|
| common_voice_19_0 | 6.31 | 5.84 | 4.30 | **4.14** | 4.28 |
| Tuda-De | 11.45 | 11.21 | 9.89 | 13.88 | **8.10** |
| multilingual librispeech | 18.03 | 17.69 | 13.46 | 10.10 | **4.71** |
| All | 14.16 | 13.79 | 10.51 | 8.48 | **4.75** |
### Training data
The training data for this model includes a large amount of spoken German from various sources. The data was carefully selected and processed to optimize recognition performance.
### Training process
The training of the model was performed with the following hyperparameters
- Batch size: 12288
- Epochs: 3
- Learning rate: 1e-6
- Data augmentation: No
- Optimizer: [Ademamix](https://arxiv.org/abs/2409.03137)
### How to use
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "primeline/whisper-large-v3-turbo-german"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
## [About us](https://primeline-ai.com/en/)
[![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)
Your partner for AI infrastructure in Germany <br>
Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing. Optimized for AI training and inference.
Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)