layoutlmv3-cord / README.md
cuongdz01's picture
End of training
72b62e5
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-cord
    results: []

layoutlmv3-cord

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1589
  • Precision: 0.9433
  • Recall: 0.9521
  • F1: 0.9477
  • Accuracy: 0.9669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.5 100 0.6487 0.7825 0.8006 0.7914 0.8330
No log 1.0 200 0.4266 0.8496 0.8686 0.8590 0.8925
No log 1.5 300 0.2553 0.9008 0.9057 0.9033 0.9341
No log 2.0 400 0.2496 0.8960 0.9057 0.9008 0.9295
0.5667 2.5 500 0.2016 0.9274 0.9374 0.9324 0.9554
0.5667 3.0 600 0.1806 0.9387 0.9467 0.9427 0.9609
0.5667 3.5 700 0.1667 0.9424 0.9474 0.9449 0.9630
0.5667 4.0 800 0.1735 0.9452 0.9467 0.9459 0.9639
0.5667 4.5 900 0.1657 0.9456 0.9529 0.9492 0.9660
0.1025 5.0 1000 0.1589 0.9433 0.9521 0.9477 0.9669

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.16.1
  • Tokenizers 0.15.0