|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-large-cord |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-large-cord |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1616 |
|
- Precision: 0.9526 |
|
- Recall: 0.9482 |
|
- F1: 0.9504 |
|
- Accuracy: 0.9677 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.25 | 100 | 0.5321 | 0.7584 | 0.7859 | 0.7719 | 0.8224 | |
|
| No log | 0.5 | 200 | 0.4949 | 0.8091 | 0.8354 | 0.8221 | 0.8683 | |
|
| No log | 0.75 | 300 | 0.3478 | 0.8668 | 0.8648 | 0.8658 | 0.8916 | |
|
| No log | 1.0 | 400 | 0.5194 | 0.75 | 0.7117 | 0.7304 | 0.8513 | |
|
| 0.6065 | 1.25 | 500 | 0.3052 | 0.9059 | 0.9003 | 0.9031 | 0.9341 | |
|
| 0.6065 | 1.5 | 600 | 0.2427 | 0.9245 | 0.9173 | 0.9209 | 0.9443 | |
|
| 0.6065 | 1.75 | 700 | 0.2372 | 0.9174 | 0.9181 | 0.9177 | 0.9477 | |
|
| 0.6065 | 2.0 | 800 | 0.2044 | 0.9247 | 0.9212 | 0.9230 | 0.9494 | |
|
| 0.6065 | 2.25 | 900 | 0.1847 | 0.9442 | 0.9413 | 0.9427 | 0.9613 | |
|
| 0.1862 | 2.5 | 1000 | 0.1616 | 0.9526 | 0.9482 | 0.9504 | 0.9677 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|