Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-3B-Instruct
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- format: custom
  path: lavita/ChatDoctor-HealthCareMagic-100k
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: cwaud/ea258833f53-4c8a-4b1a-9abf-59da4fa11e18
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GiB
  1: 70GiB
  2: 70GiB
  3: 70GiB
max_steps: 888
micro_batch_size: 1
mlflow_experiment_name: lavita/ChatDoctor-HealthCareMagic-100k
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 153c7d6f
warmup_raio: 0.03
warmup_ratio: 0.04
weight_decay: 0.01
xformers_attention: null

ea258833f53-4c8a-4b1a-9abf-59da4fa11e18

This model is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 35
  • training_steps: 888

Training results

Training Loss Epoch Step Validation Loss
3.0904 0.0003 1 3.2887
2.6898 0.0071 25 2.7006
2.5132 0.0143 50 2.5567
2.4234 0.0214 75 2.4513
2.5322 0.0285 100 2.4194
2.2951 0.0357 125 2.3581
2.331 0.0428 150 2.3471
2.2978 0.0499 175 2.3032
2.1733 0.0571 200 2.2889
2.194 0.0642 225 2.2525
2.3849 0.0714 250 2.2398
2.0697 0.0785 275 2.2127
2.5496 0.0856 300 2.2259
2.0852 0.0928 325 2.1999
2.2164 0.0999 350 2.2020
2.2373 0.1070 375 2.1708
2.2789 0.1142 400 2.1725
2.1254 0.1213 425 2.1471
2.11 0.1284 450 2.1469
2.0535 0.1356 475 2.1419
2.1039 0.1427 500 2.1362
1.9734 0.1498 525 2.1290
2.0061 0.1570 550 2.1158
2.1663 0.1641 575 2.1151
2.1725 0.1713 600 2.1112
2.2051 0.1784 625 2.1108
2.0556 0.1855 650 2.1073
1.9651 0.1927 675 2.1079

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
23
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for cwaud/ea258833f53-4c8a-4b1a-9abf-59da4fa11e18

Adapter
(68)
this model