metadata
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v2-ca
results: []
whisper-large-v2-ca
This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1840
- Wer: 0.4096
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0354 | 9.4340 | 1000 | 0.8619 | 0.4279 |
0.0073 | 18.8679 | 2000 | 1.0045 | 0.4271 |
0.0008 | 28.3019 | 3000 | 1.0738 | 0.4097 |
0.0003 | 37.7358 | 4000 | 1.1648 | 0.4106 |
0.0002 | 47.1698 | 5000 | 1.1840 | 0.4096 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1