File size: 5,036 Bytes
af713cc e3d724f af713cc e949415 bdab21e e5ebd9b bdab21e e3d724f bdab21e e3d724f bdab21e e3d724f deaf366 e3d724f d7530b8 deaf366 58b84ea deaf366 58b84ea 22f3e9b deaf366 707eeed deaf366 22f3e9b 58b84ea deaf366 58b84ea deaf366 22f3e9b 58b84ea deaf366 e3d724f bdab21e e3d724f 52e8e3f e3d724f 707eeed e3d724f 52e8e3f e3d724f 57ca36b e3d724f 57ca36b 9ba4f3c e3d724f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
license: mit
tags:
- Machine Learning Interatomic Potential
---
# Model Card for mace-universal / mace-mp
MACE-MP is a pretrained general-purpose foundational interatomic potential published with the [preprint arXiv:2401.00096](https://arxiv.org/abs/2401.00096).
This repository is the archive of pretrained checkpoints for manual loading using `MACECalculator` or further fine-tuning. Now the easiest way to use models is to follow the **[documentation for foundtional models](https://mace-docs.readthedocs.io/en/latest/examples/foundation_models.html)**.
All the models are trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories compiled by [CHGNet](https://arxiv.org/abs/2302.14231) authors to cover 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction on [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the associated [preprint](https://arXiv.org/abs/2308.14920).
[MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
# Usage
1. (optional) Install Pytorch, [ASE](https://wiki.fysik.dtu.dk/ase/) prerequisites for preferred version
2. Install [MACE](https://github.com/ACEsuit/mace) through GitHub (not through pypi)
```shell
pip install git+https://github.com/ACEsuit/mace.git
```
3. Use MACECalculator
```python
from mace.calculators import MACECalculator
from ase import Atoms, units
from ase.build import bulk
from ase.md.npt import NPT
atoms = bulk("NaCl", crystalstructure='rocksalt', a=3.54, cubic=True)
calculator = MACECalculator(
model_paths=/path/to/pretrained.model,
device=device,
default_dtype="float32" or "float64",
)
atoms.calc = calculator
dyn = NPT(
atoms=atoms,
timestep=timestep,
temperature_K=temperature,
externalstress=externalstress,
ttime=ttime,
pfactor=pfactor,
)
dyn.run(steps)
```
# Citing
If you use the pretrained models in this repository, please cite all the following:
```
@article{batatia2023foundation,
title={A foundation model for atomistic materials chemistry},
author={Batatia, Ilyes and Benner, Philipp and Chiang, Yuan and Elena, Alin M and Kov{\'a}cs, D{\'a}vid P and Riebesell, Janosh and Advincula, Xavier R and Asta, Mark and Baldwin, William J and Bernstein, Noam and others},
journal={arXiv preprint arXiv:2401.00096},
year={2023}
}
@inproceedings{Batatia2022mace,
title={{MACE}: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields},
author={Ilyes Batatia and David Peter Kovacs and Gregor N. C. Simm and Christoph Ortner and Gabor Csanyi},
booktitle={Advances in Neural Information Processing Systems},
editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho},
year={2022},
url={https://openreview.net/forum?id=YPpSngE-ZU}
}
@article{riebesell2023matbench,
title={Matbench Discovery--An evaluation framework for machine learning crystal stability prediction},
author={Riebesell, Janosh and Goodall, Rhys EA and Jain, Anubhav and Benner, Philipp and Persson, Kristin A and Lee, Alpha A},
journal={arXiv preprint arXiv:2308.14920},
year={2023}
}
@misc {yuan_chiang_2023,
author = { {Yuan Chiang, Philipp Benner} },
title = { mace-universal (Revision e5ebd9b) },
year = 2023,
url = { https://huggingface.co/cyrusyc/mace-universal },
doi = { 10.57967/hf/1202 },
publisher = { Hugging Face }
}
@article{deng2023chgnet,
title={CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling},
author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J and Ceder, Gerbrand},
journal={Nature Machine Intelligence},
pages={1--11},
year={2023},
publisher={Nature Publishing Group UK London}
}
```
# Training Guide
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
For now, please download MPTrj data from [figshare](https://figshare.com/articles/dataset/Materials_Project_Trjectory_MPtrj_Dataset/23713842). We may upload to HuggingFace Datasets in the future.
## Fine-tuning
<!-- This should link to a Training Procedure Card, perhaps with a short stub of information on what the training procedure is all about as well as documentation related to hyperparameters or additional training details. -->
We provide an example multi-GPU training script [2023-08-14-mace-universal.sbatch](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.sbatch), which uses 40 A100s on NERSC Perlmutter. Please see MACE `multi-gpu` branch for more detailed instructions.
|