metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-dc
results: []
bart-large-cnn-dc
This model is a fine-tuned version of facebook/bart-large-cnn on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7411
- Rouge1: 32.6259
- Rouge2: 13.8436
- Rougel: 24.1807
- Rougelsum: 25.5363
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
1.913 | 1.0 | 2676 | 1.7099 | 31.961 | 13.1769 | 22.9039 | 24.4001 |
1.4454 | 2.0 | 5352 | 1.5883 | 32.4628 | 13.6901 | 23.9072 | 25.1181 |
1.1456 | 3.0 | 8028 | 1.5655 | 32.4881 | 13.8212 | 23.8344 | 25.0851 |
0.8904 | 4.0 | 10704 | 1.6124 | 32.7249 | 13.7468 | 24.0745 | 25.5324 |
0.6868 | 5.0 | 13380 | 1.7411 | 32.6259 | 13.8436 | 24.1807 | 25.5363 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2