rut5-base-summ / README.md
d0rj's picture
Add evaluation results on the default config and test split of xsum (#3)
118f905
---
language:
- ru
- en
tags:
- summarization
- dialogue-summarization
- text2text-generation
- t5
datasets:
- d0rj/samsum-ru
- IlyaGusev/gazeta
- zjkarina/matreshka
- rcp-meetings/rudialogsum_v2
- GEM/wiki_lingua
- mlsum
metrics:
- bleu
- rouge
widget:
- example_title: Diploma Introduction
text: 'Актуальность проблемы. Электронная информация играет все большую роль во
всех сферах жизни современного общества. В последние годы объем научно-технической
текстовой информации в электронном виде возрос настолько, что возникает угроза
обесценивания этой информации в связи с трудностями поиска необходимых сведений
среди множества доступных текстов. Развитие информационных ресурсов Интернет многократно
усугубило проблему информационной перегрузки. В этой ситуации особенно актуальными
становятся методы автоматизации реферирования текстовой информации, то есть методы
получения сжатого представления текстовых документов–рефератов (аннотаций). Постановка проблемы автоматического
реферирования текста и соответственно попытки ее решения с использованием различных
подходов предпринимались многими исследователями. История применения вычислительной
техники для реферирования насчитывает уже более 50 лет и связана с именами таких
исследователей, как Г.П. Лун, В.Е. Берзон, И.П. Cевбо, Э.Ф. Скороходько, Д.Г.
Лахути, Р.Г. Пиотровский и др. За эти годы выработаны многочисленные подходы
к решению данной проблемы, которые достаточно четко подразделяются на два направления:
автоматическое реферирование, основанное на экстрагировании из первичных документов
с помощью определенных формальных признаков «наиболее информативных» фраз (фрагментов),
совокупность которых образует некоторый экстракт; автоматическое реферирование,
основанное на выделении из текстов с помощью специальных информационных языков
наиболее существенной информации и порождении новых текстов (рефератов), содержательно
обобщающих первичные документы.
'
- example_title: Biological Info
text: Первую многоножку, у которой более тысячи ног, обнаружили в австралийских
пещерах биологи, изучавшие там подземные воды. Предыдущей рекордсменкой по количеству
ног была 700-ногая многоножка. Новый вид имеет длинное тонкое тело, похожее на
нить, и большое количество конечностей, по-видимому, дает преимущества для быстрого
перемещения и проникновения в труднодоступные места ученые полагают, такая многоножка
может спокойно перемещаться по трещинам в камнях. Австралия известна своими огромными
и жутковатыми животными вроде 25-сантиметровых пауков. Теперь список пугающих
членистоногих пополнился самой «многоногой» в мире многоножкой, у которой более
тысячи ног. Необычное животное обнаружила группа исследователей из Австралии и
США в пещерах на западе страны. Подробнее многоножку ученые описали в статье в
журнале Scientific Reports. Исследователи занимались оценкой воздействия подземных
вод на окружающую среду в зоне добычи полезных ископаемых на западе страны, когда
наткнулись на новый вид многоножек. В отличие от большинства сородичей, живущих
на поверхности, эти многоножки обитали в пещерах на глубине до 60 метров. Новый
вид исследователи назвали Eumillipes persephone, в честь Персефоны древнегреческой
богини подземного мира. У многоножки оказалось 1306 ног больше, чем у любого
другого известного вида. Предыдущей рекордсменкой была калифорнийская Illacme
plenipes, у которой насчитывалось до 750 ног. «Эти животные были настолько уникальны,
говорит биолог Бруно Бузатто. Как только я понял, какой длины они были...
Стало ясно, что это что-то совершенно новое». У Е. persephone нитевидное тело
длиной около 9,5 см и шириной всего миллиметр, состоящее из 330 сегментов, короткие
ноги и конусообразная голова. Как и другие животные, живущие в постоянной темноте,
эти многоножки бледны и слепы. Энтомолог Пол Марек сравнивает ее с белой нитью,
выдернутой из рубашки. Чтобы посчитать количество ног, ученым пришлось сначала
снять многоножку в высоком разрешении, а затем закрашивать на фото каждый десяток
ног другим цветом. (https://www.gazeta.ru/science/2021/12/17_a_14325355.shtml)
model-index:
- name: d0rj/rut5-base-summ
results:
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- type: rouge
value: 28.8694
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTdhMjM4YWJiZTBiNmJhNTc0ZjQ4M2E1M2RjMDI4YThmYjEzMmJmZjdlOGRjOWRiZDA2YWEzOTU0MTMwYmJjNCIsInZlcnNpb24iOjF9.6bddYV-Rnp4zhgQjbv4cHKtXHDCLknfxTH2bYsVe6R9wgW45gUSck61EIeJdqj0PS7Vi2zcz8YW4DEXDd-UECQ
- type: rouge
value: 8.4686
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2NiOTdkNTE0NjVmYTcyMDY1ZjYzMjZlZjI1MDViOWFmM2M1MDZjOGZiYThlMTc4MWY5YThlNDJmOGYyNWRmZCIsInZlcnNpb24iOjF9.BLeNnva3EJFMz8xwXZamguKWhLyaGTRFr1C12Yh8xTlimrc_mENHqwshJxdi4RULcGwlQmjGjXNw1DMJ42pDCQ
- type: rouge
value: 24.2357
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjM2OGMwMGYzOTgwNjhlZjhjNjU2YzU3MDZkMjljMzExZjYwNTU1MDM0YmM1NmE3OTUyYzBhMzcyOGM5ZmY1MSIsInZlcnNpb24iOjF9.ttNXKqK9rTsMM1aj4XvXUVuJZZAtgG2JE2NI3ZWT4kVcsC7F6mYFXNfUKEk2koKPkq0gwdPiAc-wrpbtmQg5Cg
- type: rouge
value: 25.8543
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmMzNTdjMGFkNzhiYzFkYWMwNWRlZTM5ZTMxMjU5MjFiMDVjNDk3MWFlMTM5Yzc4MTFjYzNhODVmNjQ3ZTBmNyIsInZlcnNpb24iOjF9.80eUellPpBKzjW-kKDjr6WlzFh_nyC2Q4-gNtzQekOzUyuPynl913nWh4NcAw5YXbYC24dklshdFD5VheeYlBQ
- type: loss
value: 3.2456042766571045
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWEwZTRlMDEyZDQ0ZTBiMzAyZTkyZWUwOGYyODQ0NzA1MWM4NTE3ZDBjYTYxNmMxODIyNmNiZDM0MmYzMzNjZCIsInZlcnNpb24iOjF9.evm57JUbHamIx2FcFmjRHwvZ3e818BYxT8tuv26KVnq9IHO8xyMHPes9slOMhdTijAT_leexMIKMRT_iFOGHAg
- type: gen_len
value: 27.5543
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTIzNWY2NGEyNjQyMzdmYmM4ZDI5MTVkZDQ0ZTk3NmFiOWRjNTdiMjU3MmQwY2NhZTEzNTVhZGU5NTZhN2JiZiIsInZlcnNpb24iOjF9.7C3OQP2bl0EZRhRlRYtxd6cQapif0a2Vq5kRFiSdX6KLxU_QALZAlh_9DFyyYPh39R3e6Hyi438Ox6BGaalmBA
- task:
type: summarization
name: Summarization
dataset:
name: xsum
type: xsum
config: default
split: test
metrics:
- type: rouge
value: 16.1279
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgxZjgzZjAwOGViNTNjZDZhNTBhNzUzOTJiYmRkOWM5NDc0MjAxNzdjZDMyMDhlYzFiN2NlNGI5OTVkNDNiOCIsInZlcnNpb24iOjF9.Ix7CPD9gti8W7OMF4NtbMejt6fPEoZRJw2O-GeV-JRkgrIRXkrifGGE55BHdQyEe2KRcAcNCTav6igtiuEd7Cw
- type: rouge
value: 2.1128
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmViN2Y2OTA2YmE4YWYyODUxZDljNzkwMTM0ZWQ0ZTdjYWIzOTY0NzZjZTA1ZWNhNmE3OTU0NDAzNjVkMmE4ZSIsInZlcnNpb24iOjF9.G0EZ_XzRCLNeNL32Hzr7nGQmbX8rOjHfVuZW2zyIgnzenMMHWzAtN5vqq7R9ZVPP3roLFD5XSFyigHchIqu2Cg
- type: rouge
value: 12.2033
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTM3YTY2YWY5M2VhM2MyNWZhOGZlNTZlMjk5Y2MzMGViYTAyOGJjODZkZTBhMjZjOWViYTI4Y2RkMmEwZTQxNCIsInZlcnNpb24iOjF9.i3wgF36CvXF3rVGQHiR7bpkQ4zB7huuOn8yNnj-elmOkDmp7Mmw1UfGCX_1x99mBrnMHWdCJ57rCCYr2XbWrAw
- type: rouge
value: 12.4127
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODg2MDUxZGU3MThjNzUxY2FiYjE3NTk5ZTdkNTYzMmFmNGVmZGU0NDQwOWQzOWNiZDE5YmViNDZlMzA4OWI2ZCIsInZlcnNpb24iOjF9.VJsGd6PO5iy5p5bE2QS81UXhxocsEnRNswbPcWdMDO9yQ4rU7v0QlucI53bQ7MPGpDThMCfyjpvnu682rQDGDg
- type: loss
value: 4.575754165649414
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmY5NTc1MGY3MmFkNWMyZDlmNTZhOWYyYWRhNGM0MWJkYmVjZGZiODAzYmZmMDk3MjViMDNjYjFlYmJlZDhiYSIsInZlcnNpb24iOjF9.0Tc8MQAwiII5CcQTtb7MO-vZX_KXiBuKy30c4qG5MeRgcLmKMYZcG-zb2MgHr-kthgsHAasDciWOPhzMxMNzDg
- type: gen_len
value: 39.2258
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGM1NTgzMjJlYjMxZjhmM2E1NjIwMDI4YTJkNzI5YjNlMWNiOTQxYTMxNzg3Zjk4YjBiOGU3MGMxNWJkNzUwZSIsInZlcnNpb24iOjF9.xFEROlFxxfmkQDBXQOaCOXApaVoarWTQYTVw8pB8CCRuKSRWljDWuPARSLX79Mv0k3VtHhWNRneW4PakeVyPCA
---
# rut5-base-summ
## Model
Finetuned [ai-forever/ruT5-base](https://huggingface.co/ai-forever/ruT5-base) for text and dialogue summarization.
## Data
- [d0rj/samsum-ru](https://huggingface.co/datasets/d0rj/samsum-ru)
- [IlyaGusev/gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta)
- [zjkarina/matreshka](https://huggingface.co/datasets/zjkarina/matreshka)
- [rcp-meetings/rudialogsum_v2](https://huggingface.co/datasets/rcp-meetings/rudialogsum_v2)
- [GEM/wiki_lingua](https://huggingface.co/datasets/GEM/wiki_lingua)
- [mlsum](https://huggingface.co/datasets/mlsum)
All 'train' subsets was concatenated and shuffled with seed `1000 - 7`.
Train subset = 155678 rows.
## Metrics
Evaluation on 10% of concatenated 'validation' subsets = 1458 rows.
See [WandB logs](https://wandb.ai/d0rj/summarization/runs/5mmyskgi).
See report at **REPORT WIP**.
## Notes
> Scheduler, optimizer and trainer states are saved into this repo, so you can use that to continue finetune with your own data with existing gradients.
## Usage
### Summarization pipeline
```python
from transformers import pipeline
pipe = pipeline('summarization', model='d0rj/rut5-base-summ')
pipe(text)
```
### Text-to-text generation
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained('d0rj/rut5-base-summ')
model = T5ForConditionalGeneration.from_pretrained('d0rj/rut5-base-summ').eval()
input_ids = tokenizer(text, return_tensors='pt').input_ids
outputs = model.generate(input_ids)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
```