my_wnut_model / README.md
danielcfox's picture
Training in progress epoch 2
6ad1ca3
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: danielcfox/my_wnut_model
    results: []

danielcfox/my_wnut_model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1094
  • Validation Loss: 0.2448
  • Train Precision: 0.6503
  • Train Recall: 0.4426
  • Train F1: 0.5267
  • Train Accuracy: 0.9485
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.3421 0.2973 0.4769 0.1974 0.2792 0.9335 0
0.1456 0.2498 0.6686 0.4055 0.5048 0.9452 1
0.1094 0.2448 0.6503 0.4426 0.5267 0.9485 2

Framework versions

  • Transformers 4.35.0
  • TensorFlow 2.14.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1