llama_1b_step2_batch_v3
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3241
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.174 | 0.0682 | 50 | 1.1018 |
0.8332 | 0.1363 | 100 | 0.8992 |
0.6499 | 0.2045 | 150 | 0.7669 |
0.823 | 0.2727 | 200 | 0.6721 |
0.6367 | 0.3408 | 250 | 0.6062 |
0.7465 | 0.4090 | 300 | 0.5634 |
0.3689 | 0.4772 | 350 | 0.5195 |
0.4012 | 0.5453 | 400 | 0.4824 |
0.3911 | 0.6135 | 450 | 0.4470 |
0.4325 | 0.6817 | 500 | 0.4248 |
0.338 | 0.7498 | 550 | 0.4069 |
0.3274 | 0.8180 | 600 | 0.3879 |
0.3937 | 0.8862 | 650 | 0.3740 |
0.2884 | 0.9543 | 700 | 0.3620 |
0.2069 | 1.0225 | 750 | 0.3641 |
0.1866 | 1.0907 | 800 | 0.3545 |
0.2269 | 1.1588 | 850 | 0.3532 |
0.2287 | 1.2270 | 900 | 0.3479 |
0.2592 | 1.2952 | 950 | 0.3415 |
0.191 | 1.3633 | 1000 | 0.3361 |
0.2337 | 1.4315 | 1050 | 0.3346 |
0.2271 | 1.4997 | 1100 | 0.3321 |
0.2411 | 1.5678 | 1150 | 0.3279 |
0.2503 | 1.6360 | 1200 | 0.3271 |
0.2475 | 1.7042 | 1250 | 0.3259 |
0.191 | 1.7723 | 1300 | 0.3254 |
0.1946 | 1.8405 | 1350 | 0.3246 |
0.2598 | 1.9087 | 1400 | 0.3242 |
0.157 | 1.9768 | 1450 | 0.3241 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.