ACCC1380's picture
Upload lora-scripts/sd-scripts/library/original_unet.py with huggingface_hub
99f5c2e verified
raw
history blame
70.3 kB
# Diffusers 0.10.2からStable Diffusionに必要な部分だけを持ってくる
# 条件分岐等で不要な部分は削除している
# コードの多くはDiffusersからコピーしている
# 制約として、モデルのstate_dictがDiffusers 0.10.2のものと同じ形式である必要がある
# Copy from Diffusers 0.10.2 for Stable Diffusion. Most of the code is copied from Diffusers.
# Unnecessary parts are deleted by condition branching.
# As a constraint, the state_dict of the model must be in the same format as that of Diffusers 0.10.2
"""
v1.5とv2.1の相違点は
- attention_head_dimがintかlist[int]か
- cross_attention_dimが768か1024か
- use_linear_projection: trueがない(=False, 1.5)かあるか
- upcast_attentionがFalse(1.5)かTrue(2.1)か
- (以下は多分無視していい)
- sample_sizeが64か96か
- dual_cross_attentionがあるかないか
- num_class_embedsがあるかないか
- only_cross_attentionがあるかないか
v1.5
{
"_class_name": "UNet2DConditionModel",
"_diffusers_version": "0.6.0",
"act_fn": "silu",
"attention_head_dim": 8,
"block_out_channels": [
320,
640,
1280,
1280
],
"center_input_sample": false,
"cross_attention_dim": 768,
"down_block_types": [
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D"
],
"downsample_padding": 1,
"flip_sin_to_cos": true,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-05,
"norm_num_groups": 32,
"out_channels": 4,
"sample_size": 64,
"up_block_types": [
"UpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D"
]
}
v2.1
{
"_class_name": "UNet2DConditionModel",
"_diffusers_version": "0.10.0.dev0",
"act_fn": "silu",
"attention_head_dim": [
5,
10,
20,
20
],
"block_out_channels": [
320,
640,
1280,
1280
],
"center_input_sample": false,
"cross_attention_dim": 1024,
"down_block_types": [
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D"
],
"downsample_padding": 1,
"dual_cross_attention": false,
"flip_sin_to_cos": true,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": null,
"only_cross_attention": false,
"out_channels": 4,
"sample_size": 96,
"up_block_types": [
"UpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D"
],
"use_linear_projection": true,
"upcast_attention": true
}
"""
import math
from types import SimpleNamespace
from typing import Dict, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
BLOCK_OUT_CHANNELS: Tuple[int] = (320, 640, 1280, 1280)
TIMESTEP_INPUT_DIM = BLOCK_OUT_CHANNELS[0]
TIME_EMBED_DIM = BLOCK_OUT_CHANNELS[0] * 4
IN_CHANNELS: int = 4
OUT_CHANNELS: int = 4
LAYERS_PER_BLOCK: int = 2
LAYERS_PER_BLOCK_UP: int = LAYERS_PER_BLOCK + 1
TIME_EMBED_FLIP_SIN_TO_COS: bool = True
TIME_EMBED_FREQ_SHIFT: int = 0
NORM_GROUPS: int = 32
NORM_EPS: float = 1e-5
TRANSFORMER_NORM_NUM_GROUPS = 32
DOWN_BLOCK_TYPES = ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]
UP_BLOCK_TYPES = ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"]
# region memory efficient attention
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
"""Algorithm 2 in the paper"""
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = q.shape[-1] ** -0.5
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, "b n -> b 1 1 n")
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
q_start_index - k_start_index + 1
)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.0)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
"""Algorithm 4 in the paper"""
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
q_start_index - k_start_index + 1
)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.0)
p = exp_attn_weights / lc
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
# endregion
def get_parameter_dtype(parameter: torch.nn.Module):
return next(parameter.parameters()).dtype
def get_parameter_device(parameter: torch.nn.Module):
return next(parameter.parameters()).device
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
# Deep Shrink: We do not common this function, because minimize dependencies.
def resize_like(x, target, mode="bicubic", align_corners=False):
org_dtype = x.dtype
if org_dtype == torch.bfloat16:
x = x.to(torch.float32)
if x.shape[-2:] != target.shape[-2:]:
if mode == "nearest":
x = F.interpolate(x, size=target.shape[-2:], mode=mode)
else:
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners)
if org_dtype == torch.bfloat16:
x = x.to(org_dtype)
return x
class SampleOutput:
def __init__(self, sample):
self.sample = sample
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
self.act = None
if act_fn == "silu":
self.act = nn.SiLU()
elif act_fn == "mish":
self.act = nn.Mish()
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
def forward(self, sample):
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class ResnetBlock2D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.norm1 = torch.nn.GroupNorm(num_groups=NORM_GROUPS, num_channels=in_channels, eps=NORM_EPS, affine=True)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.time_emb_proj = torch.nn.Linear(TIME_EMBED_DIM, out_channels)
self.norm2 = torch.nn.GroupNorm(num_groups=NORM_GROUPS, num_channels=out_channels, eps=NORM_EPS, affine=True)
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
# if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
self.use_in_shortcut = self.in_channels != self.out_channels
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
return output_tensor
class DownBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
add_downsample=True,
):
super().__init__()
self.has_cross_attention = False
resnets = []
for i in range(LAYERS_PER_BLOCK):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = [Downsample2D(out_channels, out_channels=out_channels)]
else:
self.downsamplers = None
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
pass
def set_use_sdpa(self, sdpa):
pass
def forward(self, hidden_states, temb=None):
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
else:
hidden_states = resnet(hidden_states, temb)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class Downsample2D(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)
def forward(self, hidden_states):
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
return hidden_states
class CrossAttention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
upcast_attention: bool = False,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
# no dropout here
self.use_memory_efficient_attention_xformers = False
self.use_memory_efficient_attention_mem_eff = False
self.use_sdpa = False
# Attention processor
self.processor = None
def set_use_memory_efficient_attention(self, xformers, mem_eff):
self.use_memory_efficient_attention_xformers = xformers
self.use_memory_efficient_attention_mem_eff = mem_eff
def set_use_sdpa(self, sdpa):
self.use_sdpa = sdpa
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def set_processor(self):
return self.processor
def get_processor(self):
return self.processor
def forward(self, hidden_states, context=None, mask=None, **kwargs):
if self.processor is not None:
(
hidden_states,
encoder_hidden_states,
attention_mask,
) = translate_attention_names_from_diffusers(
hidden_states=hidden_states, context=context, mask=mask, **kwargs
)
return self.processor(
attn=self,
hidden_states=hidden_states,
encoder_hidden_states=context,
attention_mask=mask,
**kwargs
)
if self.use_memory_efficient_attention_xformers:
return self.forward_memory_efficient_xformers(hidden_states, context, mask)
if self.use_memory_efficient_attention_mem_eff:
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
if self.use_sdpa:
return self.forward_sdpa(hidden_states, context, mask)
query = self.to_q(hidden_states)
context = context if context is not None else hidden_states
key = self.to_k(context)
value = self.to_v(context)
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
hidden_states = self._attention(query, key, value)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# hidden_states = self.to_out[1](hidden_states) # no dropout
return hidden_states
def _attention(self, query, key, value):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
# TODO support Hypernetworks
def forward_memory_efficient_xformers(self, x, context=None, mask=None):
import xformers.ops
h = self.heads
q_in = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
out = rearrange(out, "b n h d -> b n (h d)", h=h)
out = self.to_out[0](out)
return out
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
flash_func = FlashAttentionFunction
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k = self.to_k(context)
v = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out[0](out)
return out
def forward_sdpa(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = rearrange(out, "b h n d -> b n (h d)", h=h)
out = self.to_out[0](out)
return out
def translate_attention_names_from_diffusers(
hidden_states: torch.FloatTensor,
context: Optional[torch.FloatTensor] = None,
mask: Optional[torch.FloatTensor] = None,
# HF naming
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None
):
# translate from hugging face diffusers
context = context if context is not None else encoder_hidden_states
# translate from hugging face diffusers
mask = mask if mask is not None else attention_mask
return hidden_states, context, mask
# feedforward
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
):
super().__init__()
inner_dim = int(dim * 4) # mult is always 4
self.net = nn.ModuleList([])
# project in
self.net.append(GEGLU(dim, inner_dim))
# project dropout
self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0
# project out
self.net.append(nn.Linear(inner_dim, dim))
def forward(self, hidden_states):
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class BasicTransformerBlock(nn.Module):
def __init__(
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
):
super().__init__()
# 1. Self-Attn
self.attn1 = CrossAttention(
query_dim=dim,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
upcast_attention=upcast_attention,
)
self.ff = FeedForward(dim)
# 2. Cross-Attn
self.attn2 = CrossAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
upcast_attention=upcast_attention,
)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa: bool):
self.attn1.set_use_sdpa(sdpa)
self.attn2.set_use_sdpa(sdpa)
def forward(self, hidden_states, context=None, timestep=None):
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states)
hidden_states = self.attn1(norm_hidden_states) + hidden_states
# 2. Cross-Attention
norm_hidden_states = self.norm2(hidden_states)
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
class Transformer2DModel(nn.Module):
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
use_linear_projection: bool = False,
upcast_attention: bool = False,
):
super().__init__()
self.in_channels = in_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.use_linear_projection = use_linear_projection
self.norm = torch.nn.GroupNorm(num_groups=TRANSFORMER_NORM_NUM_GROUPS, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
cross_attention_dim=cross_attention_dim,
upcast_attention=upcast_attention,
)
]
)
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def set_use_memory_efficient_attention(self, xformers, mem_eff):
for transformer in self.transformer_blocks:
transformer.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa):
for transformer in self.transformer_blocks:
transformer.set_use_sdpa(sdpa)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
# 1. Input
batch, _, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
# 3. Output
if not self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
if not return_dict:
return (output,)
return SampleOutput(sample=output)
class CrossAttnDownBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
add_downsample=True,
cross_attention_dim=1280,
attn_num_head_channels=1,
use_linear_projection=False,
upcast_attention=False,
):
super().__init__()
self.has_cross_attention = True
resnets = []
attentions = []
self.attn_num_head_channels = attn_num_head_channels
for i in range(LAYERS_PER_BLOCK):
in_channels = in_channels if i == 0 else out_channels
resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels))
attentions.append(
Transformer2DModel(
attn_num_head_channels,
out_channels // attn_num_head_channels,
in_channels=out_channels,
cross_attention_dim=cross_attention_dim,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])
else:
self.downsamplers = None
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
for attn in self.attentions:
attn.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa):
for attn in self.attentions:
attn.set_use_sdpa(sdpa)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
output_states = ()
for resnet, attn in zip(self.resnets, self.attentions):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class UNetMidBlock2DCrossAttn(nn.Module):
def __init__(
self,
in_channels: int,
attn_num_head_channels=1,
cross_attention_dim=1280,
use_linear_projection=False,
):
super().__init__()
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
# Middle block has two resnets and one attention
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
),
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
),
]
attentions = [
Transformer2DModel(
attn_num_head_channels,
in_channels // attn_num_head_channels,
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
use_linear_projection=use_linear_projection,
)
]
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
for attn in self.attentions:
attn.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa):
for attn in self.attentions:
attn.set_use_sdpa(sdpa)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
for i, resnet in enumerate(self.resnets):
attn = None if i == 0 else self.attentions[i - 1]
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
if attn is not None:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
)[0]
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
else:
if attn is not None:
hidden_states = attn(hidden_states, encoder_hidden_states).sample
hidden_states = resnet(hidden_states, temb)
return hidden_states
class Upsample2D(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
def forward(self, hidden_states, output_size):
assert hidden_states.shape[1] == self.channels
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
hidden_states = self.conv(hidden_states)
return hidden_states
class UpBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
add_upsample=True,
):
super().__init__()
self.has_cross_attention = False
resnets = []
for i in range(LAYERS_PER_BLOCK_UP):
res_skip_channels = in_channels if (i == LAYERS_PER_BLOCK_UP - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
pass
def set_use_sdpa(self, sdpa):
pass
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
else:
hidden_states = resnet(hidden_states, temb)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
class CrossAttnUpBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
attn_num_head_channels=1,
cross_attention_dim=1280,
add_upsample=True,
use_linear_projection=False,
upcast_attention=False,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
for i in range(LAYERS_PER_BLOCK_UP):
res_skip_channels = in_channels if (i == LAYERS_PER_BLOCK_UP - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
)
)
attentions.append(
Transformer2DModel(
attn_num_head_channels,
out_channels // attn_num_head_channels,
in_channels=out_channels,
cross_attention_dim=cross_attention_dim,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
for attn in self.attentions:
attn.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa):
for attn in self.attentions:
attn.set_use_sdpa(sdpa)
def forward(
self,
hidden_states,
res_hidden_states_tuple,
temb=None,
encoder_hidden_states=None,
upsample_size=None,
):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def get_down_block(
down_block_type,
in_channels,
out_channels,
add_downsample,
attn_num_head_channels,
cross_attention_dim,
use_linear_projection,
upcast_attention,
):
if down_block_type == "DownBlock2D":
return DownBlock2D(
in_channels=in_channels,
out_channels=out_channels,
add_downsample=add_downsample,
)
elif down_block_type == "CrossAttnDownBlock2D":
return CrossAttnDownBlock2D(
in_channels=in_channels,
out_channels=out_channels,
add_downsample=add_downsample,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attn_num_head_channels,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
def get_up_block(
up_block_type,
in_channels,
out_channels,
prev_output_channel,
add_upsample,
attn_num_head_channels,
cross_attention_dim=None,
use_linear_projection=False,
upcast_attention=False,
):
if up_block_type == "UpBlock2D":
return UpBlock2D(
in_channels=in_channels,
prev_output_channel=prev_output_channel,
out_channels=out_channels,
add_upsample=add_upsample,
)
elif up_block_type == "CrossAttnUpBlock2D":
return CrossAttnUpBlock2D(
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
attn_num_head_channels=attn_num_head_channels,
cross_attention_dim=cross_attention_dim,
add_upsample=add_upsample,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
class UNet2DConditionModel(nn.Module):
_supports_gradient_checkpointing = True
def __init__(
self,
sample_size: Optional[int] = None,
attention_head_dim: Union[int, Tuple[int]] = 8,
cross_attention_dim: int = 1280,
use_linear_projection: bool = False,
upcast_attention: bool = False,
**kwargs,
):
super().__init__()
assert sample_size is not None, "sample_size must be specified"
logger.info(
f"UNet2DConditionModel: {sample_size}, {attention_head_dim}, {cross_attention_dim}, {use_linear_projection}, {upcast_attention}"
)
# 外部からの参照用に定義しておく
self.in_channels = IN_CHANNELS
self.out_channels = OUT_CHANNELS
self.sample_size = sample_size
self.prepare_config(sample_size=sample_size)
# state_dictの書式が変わるのでmoduleの持ち方は変えられない
# input
self.conv_in = nn.Conv2d(IN_CHANNELS, BLOCK_OUT_CHANNELS[0], kernel_size=3, padding=(1, 1))
# time
self.time_proj = Timesteps(BLOCK_OUT_CHANNELS[0], TIME_EMBED_FLIP_SIN_TO_COS, TIME_EMBED_FREQ_SHIFT)
self.time_embedding = TimestepEmbedding(TIMESTEP_INPUT_DIM, TIME_EMBED_DIM)
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * 4
# down
output_channel = BLOCK_OUT_CHANNELS[0]
for i, down_block_type in enumerate(DOWN_BLOCK_TYPES):
input_channel = output_channel
output_channel = BLOCK_OUT_CHANNELS[i]
is_final_block = i == len(BLOCK_OUT_CHANNELS) - 1
down_block = get_down_block(
down_block_type,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
attn_num_head_channels=attention_head_dim[i],
cross_attention_dim=cross_attention_dim,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2DCrossAttn(
in_channels=BLOCK_OUT_CHANNELS[-1],
attn_num_head_channels=attention_head_dim[-1],
cross_attention_dim=cross_attention_dim,
use_linear_projection=use_linear_projection,
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(BLOCK_OUT_CHANNELS))
reversed_attention_head_dim = list(reversed(attention_head_dim))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(UP_BLOCK_TYPES):
is_final_block = i == len(BLOCK_OUT_CHANNELS) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(BLOCK_OUT_CHANNELS) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
add_upsample=add_upsample,
attn_num_head_channels=reversed_attention_head_dim[i],
cross_attention_dim=cross_attention_dim,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=BLOCK_OUT_CHANNELS[0], num_groups=NORM_GROUPS, eps=NORM_EPS)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(BLOCK_OUT_CHANNELS[0], OUT_CHANNELS, kernel_size=3, padding=1)
# region diffusers compatibility
def prepare_config(self, *args, **kwargs):
self.config = SimpleNamespace(**kwargs)
@property
def dtype(self) -> torch.dtype:
# `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
return get_parameter_dtype(self)
@property
def device(self) -> torch.device:
# `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
return get_parameter_device(self)
def set_attention_slice(self, slice_size):
raise NotImplementedError("Attention slicing is not supported for this model.")
def is_gradient_checkpointing(self) -> bool:
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
def enable_gradient_checkpointing(self):
self.set_gradient_checkpointing(value=True)
def disable_gradient_checkpointing(self):
self.set_gradient_checkpointing(value=False)
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
modules = self.down_blocks + [self.mid_block] + self.up_blocks
for module in modules:
module.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa: bool) -> None:
modules = self.down_blocks + [self.mid_block] + self.up_blocks
for module in modules:
module.set_use_sdpa(sdpa)
def set_gradient_checkpointing(self, value=False):
modules = self.down_blocks + [self.mid_block] + self.up_blocks
for module in modules:
logger.info(f"{module.__class__.__name__} {module.gradient_checkpointing} -> {value}")
module.gradient_checkpointing = value
# endregion
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
return_dict: bool = True,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
) -> Union[Dict, Tuple]:
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a dict instead of a plain tuple.
Returns:
`SampleOutput` or `tuple`:
`SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
# デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある
# ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する
# 多分画質が悪くなるので、64で割り切れるようにしておくのが良い
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
# 64で割り切れないときはupsamplerにサイズを伝える
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# 1. time
timesteps = timestep
timesteps = self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
# timestepsは重みを含まないので常にfloat32のテンソルを返す
# しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある
# time_projでキャストしておけばいいんじゃね?
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
# 2. pre-process
sample = self.conv_in(sample)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
# downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、
# まあこちらのほうがわかりやすいかもしれない
if downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# skip connectionにControlNetの出力を追加する
if down_block_additional_residuals is not None:
down_block_res_samples = list(down_block_res_samples)
for i in range(len(down_block_res_samples)):
down_block_res_samples[i] += down_block_additional_residuals[i]
down_block_res_samples = tuple(down_block_res_samples)
# 4. mid
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
# ControlNetの出力を追加する
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection
# if we have not reached the final block and need to forward the upsample size, we do it here
# 前述のように最後のブロック以外ではupsample_sizeを伝える
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return SampleOutput(sample=sample)
def handle_unusual_timesteps(self, sample, timesteps):
r"""
timestampsがTensorでない場合、Tensorに変換する。またOnnx/Core MLと互換性のあるようにbatchサイズまでbroadcastする。
"""
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timesteps, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
return timesteps
class InferUNet2DConditionModel:
def __init__(self, original_unet: UNet2DConditionModel):
self.delegate = original_unet
# override original model's forward method: because forward is not called by `__call__`
# overriding `__call__` is not enough, because nn.Module.forward has a special handling
self.delegate.forward = self.forward
# override original model's up blocks' forward method
for up_block in self.delegate.up_blocks:
if up_block.__class__.__name__ == "UpBlock2D":
def resnet_wrapper(func, block):
def forward(*args, **kwargs):
return func(block, *args, **kwargs)
return forward
up_block.forward = resnet_wrapper(self.up_block_forward, up_block)
elif up_block.__class__.__name__ == "CrossAttnUpBlock2D":
def cross_attn_up_wrapper(func, block):
def forward(*args, **kwargs):
return func(block, *args, **kwargs)
return forward
up_block.forward = cross_attn_up_wrapper(self.cross_attn_up_block_forward, up_block)
# Deep Shrink
self.ds_depth_1 = None
self.ds_depth_2 = None
self.ds_timesteps_1 = None
self.ds_timesteps_2 = None
self.ds_ratio = None
# call original model's methods
def __getattr__(self, name):
return getattr(self.delegate, name)
def __call__(self, *args, **kwargs):
return self.delegate(*args, **kwargs)
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5):
if ds_depth_1 is None:
logger.info("Deep Shrink is disabled.")
self.ds_depth_1 = None
self.ds_timesteps_1 = None
self.ds_depth_2 = None
self.ds_timesteps_2 = None
self.ds_ratio = None
else:
logger.info(
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]"
)
self.ds_depth_1 = ds_depth_1
self.ds_timesteps_1 = ds_timesteps_1
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000
self.ds_ratio = ds_ratio
def up_block_forward(self, _self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
for resnet in _self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# Deep Shrink
if res_hidden_states.shape[-2:] != hidden_states.shape[-2:]:
hidden_states = resize_like(hidden_states, res_hidden_states)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
if _self.upsamplers is not None:
for upsampler in _self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def cross_attn_up_block_forward(
self,
_self,
hidden_states,
res_hidden_states_tuple,
temb=None,
encoder_hidden_states=None,
upsample_size=None,
):
for resnet, attn in zip(_self.resnets, _self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# Deep Shrink
if res_hidden_states.shape[-2:] != hidden_states.shape[-2:]:
hidden_states = resize_like(hidden_states, res_hidden_states)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
if _self.upsamplers is not None:
for upsampler in _self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
return_dict: bool = True,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
) -> Union[Dict, Tuple]:
r"""
current implementation is a copy of `UNet2DConditionModel.forward()` with Deep Shrink.
"""
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a dict instead of a plain tuple.
Returns:
`SampleOutput` or `tuple`:
`SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
_self = self.delegate
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
# デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある
# ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する
# 多分画質が悪くなるので、64で割り切れるようにしておくのが良い
default_overall_up_factor = 2**_self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
# 64で割り切れないときはupsamplerにサイズを伝える
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# 1. time
timesteps = timestep
timesteps = _self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理
t_emb = _self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
# timestepsは重みを含まないので常にfloat32のテンソルを返す
# しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある
# time_projでキャストしておけばいいんじゃね?
t_emb = t_emb.to(dtype=_self.dtype)
emb = _self.time_embedding(t_emb)
# 2. pre-process
sample = _self.conv_in(sample)
down_block_res_samples = (sample,)
for depth, downsample_block in enumerate(_self.down_blocks):
# Deep Shrink
if self.ds_depth_1 is not None:
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or (
self.ds_depth_2 is not None
and depth == self.ds_depth_2
and timesteps[0] < self.ds_timesteps_1
and timesteps[0] >= self.ds_timesteps_2
):
org_dtype = sample.dtype
if org_dtype == torch.bfloat16:
sample = sample.to(torch.float32)
sample = F.interpolate(sample, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype)
# downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、
# まあこちらのほうがわかりやすいかもしれない
if downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# skip connectionにControlNetの出力を追加する
if down_block_additional_residuals is not None:
down_block_res_samples = list(down_block_res_samples)
for i in range(len(down_block_res_samples)):
down_block_res_samples[i] += down_block_additional_residuals[i]
down_block_res_samples = tuple(down_block_res_samples)
# 4. mid
sample = _self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
# ControlNetの出力を追加する
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for i, upsample_block in enumerate(_self.up_blocks):
is_final_block = i == len(_self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection
# if we have not reached the final block and need to forward the upsample size, we do it here
# 前述のように最後のブロック以外ではupsample_sizeを伝える
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
sample = _self.conv_norm_out(sample)
sample = _self.conv_act(sample)
sample = _self.conv_out(sample)
if not return_dict:
return (sample,)
return SampleOutput(sample=sample)