Upload lora-scripts/sd-scripts/library/original_unet.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/original_unet.py
ADDED
@@ -0,0 +1,1919 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Diffusers 0.10.2からStable Diffusionに必要な部分だけを持ってくる
|
2 |
+
# 条件分岐等で不要な部分は削除している
|
3 |
+
# コードの多くはDiffusersからコピーしている
|
4 |
+
# 制約として、モデルのstate_dictがDiffusers 0.10.2のものと同じ形式である必要がある
|
5 |
+
|
6 |
+
# Copy from Diffusers 0.10.2 for Stable Diffusion. Most of the code is copied from Diffusers.
|
7 |
+
# Unnecessary parts are deleted by condition branching.
|
8 |
+
# As a constraint, the state_dict of the model must be in the same format as that of Diffusers 0.10.2
|
9 |
+
|
10 |
+
"""
|
11 |
+
v1.5とv2.1の相違点は
|
12 |
+
- attention_head_dimがintかlist[int]か
|
13 |
+
- cross_attention_dimが768か1024か
|
14 |
+
- use_linear_projection: trueがない(=False, 1.5)かあるか
|
15 |
+
- upcast_attentionがFalse(1.5)かTrue(2.1)か
|
16 |
+
- (以下は多分無視していい)
|
17 |
+
- sample_sizeが64か96か
|
18 |
+
- dual_cross_attentionがあるかないか
|
19 |
+
- num_class_embedsがあるかないか
|
20 |
+
- only_cross_attentionがあるかないか
|
21 |
+
|
22 |
+
v1.5
|
23 |
+
{
|
24 |
+
"_class_name": "UNet2DConditionModel",
|
25 |
+
"_diffusers_version": "0.6.0",
|
26 |
+
"act_fn": "silu",
|
27 |
+
"attention_head_dim": 8,
|
28 |
+
"block_out_channels": [
|
29 |
+
320,
|
30 |
+
640,
|
31 |
+
1280,
|
32 |
+
1280
|
33 |
+
],
|
34 |
+
"center_input_sample": false,
|
35 |
+
"cross_attention_dim": 768,
|
36 |
+
"down_block_types": [
|
37 |
+
"CrossAttnDownBlock2D",
|
38 |
+
"CrossAttnDownBlock2D",
|
39 |
+
"CrossAttnDownBlock2D",
|
40 |
+
"DownBlock2D"
|
41 |
+
],
|
42 |
+
"downsample_padding": 1,
|
43 |
+
"flip_sin_to_cos": true,
|
44 |
+
"freq_shift": 0,
|
45 |
+
"in_channels": 4,
|
46 |
+
"layers_per_block": 2,
|
47 |
+
"mid_block_scale_factor": 1,
|
48 |
+
"norm_eps": 1e-05,
|
49 |
+
"norm_num_groups": 32,
|
50 |
+
"out_channels": 4,
|
51 |
+
"sample_size": 64,
|
52 |
+
"up_block_types": [
|
53 |
+
"UpBlock2D",
|
54 |
+
"CrossAttnUpBlock2D",
|
55 |
+
"CrossAttnUpBlock2D",
|
56 |
+
"CrossAttnUpBlock2D"
|
57 |
+
]
|
58 |
+
}
|
59 |
+
|
60 |
+
v2.1
|
61 |
+
{
|
62 |
+
"_class_name": "UNet2DConditionModel",
|
63 |
+
"_diffusers_version": "0.10.0.dev0",
|
64 |
+
"act_fn": "silu",
|
65 |
+
"attention_head_dim": [
|
66 |
+
5,
|
67 |
+
10,
|
68 |
+
20,
|
69 |
+
20
|
70 |
+
],
|
71 |
+
"block_out_channels": [
|
72 |
+
320,
|
73 |
+
640,
|
74 |
+
1280,
|
75 |
+
1280
|
76 |
+
],
|
77 |
+
"center_input_sample": false,
|
78 |
+
"cross_attention_dim": 1024,
|
79 |
+
"down_block_types": [
|
80 |
+
"CrossAttnDownBlock2D",
|
81 |
+
"CrossAttnDownBlock2D",
|
82 |
+
"CrossAttnDownBlock2D",
|
83 |
+
"DownBlock2D"
|
84 |
+
],
|
85 |
+
"downsample_padding": 1,
|
86 |
+
"dual_cross_attention": false,
|
87 |
+
"flip_sin_to_cos": true,
|
88 |
+
"freq_shift": 0,
|
89 |
+
"in_channels": 4,
|
90 |
+
"layers_per_block": 2,
|
91 |
+
"mid_block_scale_factor": 1,
|
92 |
+
"norm_eps": 1e-05,
|
93 |
+
"norm_num_groups": 32,
|
94 |
+
"num_class_embeds": null,
|
95 |
+
"only_cross_attention": false,
|
96 |
+
"out_channels": 4,
|
97 |
+
"sample_size": 96,
|
98 |
+
"up_block_types": [
|
99 |
+
"UpBlock2D",
|
100 |
+
"CrossAttnUpBlock2D",
|
101 |
+
"CrossAttnUpBlock2D",
|
102 |
+
"CrossAttnUpBlock2D"
|
103 |
+
],
|
104 |
+
"use_linear_projection": true,
|
105 |
+
"upcast_attention": true
|
106 |
+
}
|
107 |
+
"""
|
108 |
+
|
109 |
+
import math
|
110 |
+
from types import SimpleNamespace
|
111 |
+
from typing import Dict, Optional, Tuple, Union
|
112 |
+
import torch
|
113 |
+
from torch import nn
|
114 |
+
from torch.nn import functional as F
|
115 |
+
from einops import rearrange
|
116 |
+
from library.utils import setup_logging
|
117 |
+
setup_logging()
|
118 |
+
import logging
|
119 |
+
logger = logging.getLogger(__name__)
|
120 |
+
|
121 |
+
BLOCK_OUT_CHANNELS: Tuple[int] = (320, 640, 1280, 1280)
|
122 |
+
TIMESTEP_INPUT_DIM = BLOCK_OUT_CHANNELS[0]
|
123 |
+
TIME_EMBED_DIM = BLOCK_OUT_CHANNELS[0] * 4
|
124 |
+
IN_CHANNELS: int = 4
|
125 |
+
OUT_CHANNELS: int = 4
|
126 |
+
LAYERS_PER_BLOCK: int = 2
|
127 |
+
LAYERS_PER_BLOCK_UP: int = LAYERS_PER_BLOCK + 1
|
128 |
+
TIME_EMBED_FLIP_SIN_TO_COS: bool = True
|
129 |
+
TIME_EMBED_FREQ_SHIFT: int = 0
|
130 |
+
NORM_GROUPS: int = 32
|
131 |
+
NORM_EPS: float = 1e-5
|
132 |
+
TRANSFORMER_NORM_NUM_GROUPS = 32
|
133 |
+
|
134 |
+
DOWN_BLOCK_TYPES = ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]
|
135 |
+
UP_BLOCK_TYPES = ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"]
|
136 |
+
|
137 |
+
|
138 |
+
# region memory efficient attention
|
139 |
+
|
140 |
+
# FlashAttentionを使うCrossAttention
|
141 |
+
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
142 |
+
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
143 |
+
|
144 |
+
# constants
|
145 |
+
|
146 |
+
EPSILON = 1e-6
|
147 |
+
|
148 |
+
# helper functions
|
149 |
+
|
150 |
+
|
151 |
+
def exists(val):
|
152 |
+
return val is not None
|
153 |
+
|
154 |
+
|
155 |
+
def default(val, d):
|
156 |
+
return val if exists(val) else d
|
157 |
+
|
158 |
+
|
159 |
+
# flash attention forwards and backwards
|
160 |
+
|
161 |
+
# https://arxiv.org/abs/2205.14135
|
162 |
+
|
163 |
+
|
164 |
+
class FlashAttentionFunction(torch.autograd.Function):
|
165 |
+
@staticmethod
|
166 |
+
@torch.no_grad()
|
167 |
+
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
168 |
+
"""Algorithm 2 in the paper"""
|
169 |
+
|
170 |
+
device = q.device
|
171 |
+
dtype = q.dtype
|
172 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
173 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
174 |
+
|
175 |
+
o = torch.zeros_like(q)
|
176 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
177 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
178 |
+
|
179 |
+
scale = q.shape[-1] ** -0.5
|
180 |
+
|
181 |
+
if not exists(mask):
|
182 |
+
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
183 |
+
else:
|
184 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
185 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
186 |
+
|
187 |
+
row_splits = zip(
|
188 |
+
q.split(q_bucket_size, dim=-2),
|
189 |
+
o.split(q_bucket_size, dim=-2),
|
190 |
+
mask,
|
191 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
192 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
193 |
+
)
|
194 |
+
|
195 |
+
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
196 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
197 |
+
|
198 |
+
col_splits = zip(
|
199 |
+
k.split(k_bucket_size, dim=-2),
|
200 |
+
v.split(k_bucket_size, dim=-2),
|
201 |
+
)
|
202 |
+
|
203 |
+
for k_ind, (kc, vc) in enumerate(col_splits):
|
204 |
+
k_start_index = k_ind * k_bucket_size
|
205 |
+
|
206 |
+
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
207 |
+
|
208 |
+
if exists(row_mask):
|
209 |
+
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
210 |
+
|
211 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
212 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
|
213 |
+
q_start_index - k_start_index + 1
|
214 |
+
)
|
215 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
216 |
+
|
217 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
218 |
+
attn_weights -= block_row_maxes
|
219 |
+
exp_weights = torch.exp(attn_weights)
|
220 |
+
|
221 |
+
if exists(row_mask):
|
222 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
223 |
+
|
224 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
225 |
+
|
226 |
+
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
227 |
+
|
228 |
+
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
229 |
+
|
230 |
+
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
231 |
+
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
232 |
+
|
233 |
+
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
234 |
+
|
235 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
236 |
+
|
237 |
+
row_maxes.copy_(new_row_maxes)
|
238 |
+
row_sums.copy_(new_row_sums)
|
239 |
+
|
240 |
+
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
241 |
+
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
242 |
+
|
243 |
+
return o
|
244 |
+
|
245 |
+
@staticmethod
|
246 |
+
@torch.no_grad()
|
247 |
+
def backward(ctx, do):
|
248 |
+
"""Algorithm 4 in the paper"""
|
249 |
+
|
250 |
+
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
251 |
+
q, k, v, o, l, m = ctx.saved_tensors
|
252 |
+
|
253 |
+
device = q.device
|
254 |
+
|
255 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
256 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
257 |
+
|
258 |
+
dq = torch.zeros_like(q)
|
259 |
+
dk = torch.zeros_like(k)
|
260 |
+
dv = torch.zeros_like(v)
|
261 |
+
|
262 |
+
row_splits = zip(
|
263 |
+
q.split(q_bucket_size, dim=-2),
|
264 |
+
o.split(q_bucket_size, dim=-2),
|
265 |
+
do.split(q_bucket_size, dim=-2),
|
266 |
+
mask,
|
267 |
+
l.split(q_bucket_size, dim=-2),
|
268 |
+
m.split(q_bucket_size, dim=-2),
|
269 |
+
dq.split(q_bucket_size, dim=-2),
|
270 |
+
)
|
271 |
+
|
272 |
+
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
273 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
274 |
+
|
275 |
+
col_splits = zip(
|
276 |
+
k.split(k_bucket_size, dim=-2),
|
277 |
+
v.split(k_bucket_size, dim=-2),
|
278 |
+
dk.split(k_bucket_size, dim=-2),
|
279 |
+
dv.split(k_bucket_size, dim=-2),
|
280 |
+
)
|
281 |
+
|
282 |
+
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
283 |
+
k_start_index = k_ind * k_bucket_size
|
284 |
+
|
285 |
+
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
286 |
+
|
287 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
288 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
|
289 |
+
q_start_index - k_start_index + 1
|
290 |
+
)
|
291 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
292 |
+
|
293 |
+
exp_attn_weights = torch.exp(attn_weights - mc)
|
294 |
+
|
295 |
+
if exists(row_mask):
|
296 |
+
exp_attn_weights.masked_fill_(~row_mask, 0.0)
|
297 |
+
|
298 |
+
p = exp_attn_weights / lc
|
299 |
+
|
300 |
+
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
|
301 |
+
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)
|
302 |
+
|
303 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
304 |
+
ds = p * scale * (dp - D)
|
305 |
+
|
306 |
+
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
|
307 |
+
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)
|
308 |
+
|
309 |
+
dqc.add_(dq_chunk)
|
310 |
+
dkc.add_(dk_chunk)
|
311 |
+
dvc.add_(dv_chunk)
|
312 |
+
|
313 |
+
return dq, dk, dv, None, None, None, None
|
314 |
+
|
315 |
+
|
316 |
+
# endregion
|
317 |
+
|
318 |
+
|
319 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
320 |
+
return next(parameter.parameters()).dtype
|
321 |
+
|
322 |
+
|
323 |
+
def get_parameter_device(parameter: torch.nn.Module):
|
324 |
+
return next(parameter.parameters()).device
|
325 |
+
|
326 |
+
|
327 |
+
def get_timestep_embedding(
|
328 |
+
timesteps: torch.Tensor,
|
329 |
+
embedding_dim: int,
|
330 |
+
flip_sin_to_cos: bool = False,
|
331 |
+
downscale_freq_shift: float = 1,
|
332 |
+
scale: float = 1,
|
333 |
+
max_period: int = 10000,
|
334 |
+
):
|
335 |
+
"""
|
336 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
337 |
+
|
338 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
339 |
+
These may be fractional.
|
340 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
341 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
342 |
+
"""
|
343 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
344 |
+
|
345 |
+
half_dim = embedding_dim // 2
|
346 |
+
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
|
347 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
348 |
+
|
349 |
+
emb = torch.exp(exponent)
|
350 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
351 |
+
|
352 |
+
# scale embeddings
|
353 |
+
emb = scale * emb
|
354 |
+
|
355 |
+
# concat sine and cosine embeddings
|
356 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
357 |
+
|
358 |
+
# flip sine and cosine embeddings
|
359 |
+
if flip_sin_to_cos:
|
360 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
361 |
+
|
362 |
+
# zero pad
|
363 |
+
if embedding_dim % 2 == 1:
|
364 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
365 |
+
return emb
|
366 |
+
|
367 |
+
|
368 |
+
# Deep Shrink: We do not common this function, because minimize dependencies.
|
369 |
+
def resize_like(x, target, mode="bicubic", align_corners=False):
|
370 |
+
org_dtype = x.dtype
|
371 |
+
if org_dtype == torch.bfloat16:
|
372 |
+
x = x.to(torch.float32)
|
373 |
+
|
374 |
+
if x.shape[-2:] != target.shape[-2:]:
|
375 |
+
if mode == "nearest":
|
376 |
+
x = F.interpolate(x, size=target.shape[-2:], mode=mode)
|
377 |
+
else:
|
378 |
+
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners)
|
379 |
+
|
380 |
+
if org_dtype == torch.bfloat16:
|
381 |
+
x = x.to(org_dtype)
|
382 |
+
return x
|
383 |
+
|
384 |
+
|
385 |
+
class SampleOutput:
|
386 |
+
def __init__(self, sample):
|
387 |
+
self.sample = sample
|
388 |
+
|
389 |
+
|
390 |
+
class TimestepEmbedding(nn.Module):
|
391 |
+
def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None):
|
392 |
+
super().__init__()
|
393 |
+
|
394 |
+
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
|
395 |
+
self.act = None
|
396 |
+
if act_fn == "silu":
|
397 |
+
self.act = nn.SiLU()
|
398 |
+
elif act_fn == "mish":
|
399 |
+
self.act = nn.Mish()
|
400 |
+
|
401 |
+
if out_dim is not None:
|
402 |
+
time_embed_dim_out = out_dim
|
403 |
+
else:
|
404 |
+
time_embed_dim_out = time_embed_dim
|
405 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
|
406 |
+
|
407 |
+
def forward(self, sample):
|
408 |
+
sample = self.linear_1(sample)
|
409 |
+
|
410 |
+
if self.act is not None:
|
411 |
+
sample = self.act(sample)
|
412 |
+
|
413 |
+
sample = self.linear_2(sample)
|
414 |
+
return sample
|
415 |
+
|
416 |
+
|
417 |
+
class Timesteps(nn.Module):
|
418 |
+
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
|
419 |
+
super().__init__()
|
420 |
+
self.num_channels = num_channels
|
421 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
422 |
+
self.downscale_freq_shift = downscale_freq_shift
|
423 |
+
|
424 |
+
def forward(self, timesteps):
|
425 |
+
t_emb = get_timestep_embedding(
|
426 |
+
timesteps,
|
427 |
+
self.num_channels,
|
428 |
+
flip_sin_to_cos=self.flip_sin_to_cos,
|
429 |
+
downscale_freq_shift=self.downscale_freq_shift,
|
430 |
+
)
|
431 |
+
return t_emb
|
432 |
+
|
433 |
+
|
434 |
+
class ResnetBlock2D(nn.Module):
|
435 |
+
def __init__(
|
436 |
+
self,
|
437 |
+
in_channels,
|
438 |
+
out_channels,
|
439 |
+
):
|
440 |
+
super().__init__()
|
441 |
+
self.in_channels = in_channels
|
442 |
+
self.out_channels = out_channels
|
443 |
+
|
444 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=NORM_GROUPS, num_channels=in_channels, eps=NORM_EPS, affine=True)
|
445 |
+
|
446 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
447 |
+
|
448 |
+
self.time_emb_proj = torch.nn.Linear(TIME_EMBED_DIM, out_channels)
|
449 |
+
|
450 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=NORM_GROUPS, num_channels=out_channels, eps=NORM_EPS, affine=True)
|
451 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
452 |
+
|
453 |
+
# if non_linearity == "swish":
|
454 |
+
self.nonlinearity = lambda x: F.silu(x)
|
455 |
+
|
456 |
+
self.use_in_shortcut = self.in_channels != self.out_channels
|
457 |
+
|
458 |
+
self.conv_shortcut = None
|
459 |
+
if self.use_in_shortcut:
|
460 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
461 |
+
|
462 |
+
def forward(self, input_tensor, temb):
|
463 |
+
hidden_states = input_tensor
|
464 |
+
|
465 |
+
hidden_states = self.norm1(hidden_states)
|
466 |
+
hidden_states = self.nonlinearity(hidden_states)
|
467 |
+
|
468 |
+
hidden_states = self.conv1(hidden_states)
|
469 |
+
|
470 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
471 |
+
hidden_states = hidden_states + temb
|
472 |
+
|
473 |
+
hidden_states = self.norm2(hidden_states)
|
474 |
+
hidden_states = self.nonlinearity(hidden_states)
|
475 |
+
|
476 |
+
hidden_states = self.conv2(hidden_states)
|
477 |
+
|
478 |
+
if self.conv_shortcut is not None:
|
479 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
480 |
+
|
481 |
+
output_tensor = input_tensor + hidden_states
|
482 |
+
|
483 |
+
return output_tensor
|
484 |
+
|
485 |
+
|
486 |
+
class DownBlock2D(nn.Module):
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
in_channels: int,
|
490 |
+
out_channels: int,
|
491 |
+
add_downsample=True,
|
492 |
+
):
|
493 |
+
super().__init__()
|
494 |
+
|
495 |
+
self.has_cross_attention = False
|
496 |
+
resnets = []
|
497 |
+
|
498 |
+
for i in range(LAYERS_PER_BLOCK):
|
499 |
+
in_channels = in_channels if i == 0 else out_channels
|
500 |
+
resnets.append(
|
501 |
+
ResnetBlock2D(
|
502 |
+
in_channels=in_channels,
|
503 |
+
out_channels=out_channels,
|
504 |
+
)
|
505 |
+
)
|
506 |
+
self.resnets = nn.ModuleList(resnets)
|
507 |
+
|
508 |
+
if add_downsample:
|
509 |
+
self.downsamplers = [Downsample2D(out_channels, out_channels=out_channels)]
|
510 |
+
else:
|
511 |
+
self.downsamplers = None
|
512 |
+
|
513 |
+
self.gradient_checkpointing = False
|
514 |
+
|
515 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
516 |
+
pass
|
517 |
+
|
518 |
+
def set_use_sdpa(self, sdpa):
|
519 |
+
pass
|
520 |
+
|
521 |
+
def forward(self, hidden_states, temb=None):
|
522 |
+
output_states = ()
|
523 |
+
|
524 |
+
for resnet in self.resnets:
|
525 |
+
if self.training and self.gradient_checkpointing:
|
526 |
+
|
527 |
+
def create_custom_forward(module):
|
528 |
+
def custom_forward(*inputs):
|
529 |
+
return module(*inputs)
|
530 |
+
|
531 |
+
return custom_forward
|
532 |
+
|
533 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
534 |
+
else:
|
535 |
+
hidden_states = resnet(hidden_states, temb)
|
536 |
+
|
537 |
+
output_states += (hidden_states,)
|
538 |
+
|
539 |
+
if self.downsamplers is not None:
|
540 |
+
for downsampler in self.downsamplers:
|
541 |
+
hidden_states = downsampler(hidden_states)
|
542 |
+
|
543 |
+
output_states += (hidden_states,)
|
544 |
+
|
545 |
+
return hidden_states, output_states
|
546 |
+
|
547 |
+
|
548 |
+
class Downsample2D(nn.Module):
|
549 |
+
def __init__(self, channels, out_channels):
|
550 |
+
super().__init__()
|
551 |
+
|
552 |
+
self.channels = channels
|
553 |
+
self.out_channels = out_channels
|
554 |
+
|
555 |
+
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)
|
556 |
+
|
557 |
+
def forward(self, hidden_states):
|
558 |
+
assert hidden_states.shape[1] == self.channels
|
559 |
+
hidden_states = self.conv(hidden_states)
|
560 |
+
|
561 |
+
return hidden_states
|
562 |
+
|
563 |
+
|
564 |
+
class CrossAttention(nn.Module):
|
565 |
+
def __init__(
|
566 |
+
self,
|
567 |
+
query_dim: int,
|
568 |
+
cross_attention_dim: Optional[int] = None,
|
569 |
+
heads: int = 8,
|
570 |
+
dim_head: int = 64,
|
571 |
+
upcast_attention: bool = False,
|
572 |
+
):
|
573 |
+
super().__init__()
|
574 |
+
inner_dim = dim_head * heads
|
575 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
576 |
+
self.upcast_attention = upcast_attention
|
577 |
+
|
578 |
+
self.scale = dim_head**-0.5
|
579 |
+
self.heads = heads
|
580 |
+
|
581 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
582 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
|
583 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
|
584 |
+
|
585 |
+
self.to_out = nn.ModuleList([])
|
586 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
587 |
+
# no dropout here
|
588 |
+
|
589 |
+
self.use_memory_efficient_attention_xformers = False
|
590 |
+
self.use_memory_efficient_attention_mem_eff = False
|
591 |
+
self.use_sdpa = False
|
592 |
+
|
593 |
+
# Attention processor
|
594 |
+
self.processor = None
|
595 |
+
|
596 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
597 |
+
self.use_memory_efficient_attention_xformers = xformers
|
598 |
+
self.use_memory_efficient_attention_mem_eff = mem_eff
|
599 |
+
|
600 |
+
def set_use_sdpa(self, sdpa):
|
601 |
+
self.use_sdpa = sdpa
|
602 |
+
|
603 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
604 |
+
batch_size, seq_len, dim = tensor.shape
|
605 |
+
head_size = self.heads
|
606 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
607 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
608 |
+
return tensor
|
609 |
+
|
610 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
611 |
+
batch_size, seq_len, dim = tensor.shape
|
612 |
+
head_size = self.heads
|
613 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
614 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
615 |
+
return tensor
|
616 |
+
|
617 |
+
def set_processor(self):
|
618 |
+
return self.processor
|
619 |
+
|
620 |
+
def get_processor(self):
|
621 |
+
return self.processor
|
622 |
+
|
623 |
+
def forward(self, hidden_states, context=None, mask=None, **kwargs):
|
624 |
+
if self.processor is not None:
|
625 |
+
(
|
626 |
+
hidden_states,
|
627 |
+
encoder_hidden_states,
|
628 |
+
attention_mask,
|
629 |
+
) = translate_attention_names_from_diffusers(
|
630 |
+
hidden_states=hidden_states, context=context, mask=mask, **kwargs
|
631 |
+
)
|
632 |
+
return self.processor(
|
633 |
+
attn=self,
|
634 |
+
hidden_states=hidden_states,
|
635 |
+
encoder_hidden_states=context,
|
636 |
+
attention_mask=mask,
|
637 |
+
**kwargs
|
638 |
+
)
|
639 |
+
if self.use_memory_efficient_attention_xformers:
|
640 |
+
return self.forward_memory_efficient_xformers(hidden_states, context, mask)
|
641 |
+
if self.use_memory_efficient_attention_mem_eff:
|
642 |
+
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
|
643 |
+
if self.use_sdpa:
|
644 |
+
return self.forward_sdpa(hidden_states, context, mask)
|
645 |
+
|
646 |
+
query = self.to_q(hidden_states)
|
647 |
+
context = context if context is not None else hidden_states
|
648 |
+
key = self.to_k(context)
|
649 |
+
value = self.to_v(context)
|
650 |
+
|
651 |
+
query = self.reshape_heads_to_batch_dim(query)
|
652 |
+
key = self.reshape_heads_to_batch_dim(key)
|
653 |
+
value = self.reshape_heads_to_batch_dim(value)
|
654 |
+
|
655 |
+
hidden_states = self._attention(query, key, value)
|
656 |
+
|
657 |
+
# linear proj
|
658 |
+
hidden_states = self.to_out[0](hidden_states)
|
659 |
+
# hidden_states = self.to_out[1](hidden_states) # no dropout
|
660 |
+
return hidden_states
|
661 |
+
|
662 |
+
def _attention(self, query, key, value):
|
663 |
+
if self.upcast_attention:
|
664 |
+
query = query.float()
|
665 |
+
key = key.float()
|
666 |
+
|
667 |
+
attention_scores = torch.baddbmm(
|
668 |
+
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
669 |
+
query,
|
670 |
+
key.transpose(-1, -2),
|
671 |
+
beta=0,
|
672 |
+
alpha=self.scale,
|
673 |
+
)
|
674 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
675 |
+
|
676 |
+
# cast back to the original dtype
|
677 |
+
attention_probs = attention_probs.to(value.dtype)
|
678 |
+
|
679 |
+
# compute attention output
|
680 |
+
hidden_states = torch.bmm(attention_probs, value)
|
681 |
+
|
682 |
+
# reshape hidden_states
|
683 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
684 |
+
return hidden_states
|
685 |
+
|
686 |
+
# TODO support Hypernetworks
|
687 |
+
def forward_memory_efficient_xformers(self, x, context=None, mask=None):
|
688 |
+
import xformers.ops
|
689 |
+
|
690 |
+
h = self.heads
|
691 |
+
q_in = self.to_q(x)
|
692 |
+
context = context if context is not None else x
|
693 |
+
context = context.to(x.dtype)
|
694 |
+
k_in = self.to_k(context)
|
695 |
+
v_in = self.to_v(context)
|
696 |
+
|
697 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
|
698 |
+
del q_in, k_in, v_in
|
699 |
+
|
700 |
+
q = q.contiguous()
|
701 |
+
k = k.contiguous()
|
702 |
+
v = v.contiguous()
|
703 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
704 |
+
|
705 |
+
out = rearrange(out, "b n h d -> b n (h d)", h=h)
|
706 |
+
|
707 |
+
out = self.to_out[0](out)
|
708 |
+
return out
|
709 |
+
|
710 |
+
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
|
711 |
+
flash_func = FlashAttentionFunction
|
712 |
+
|
713 |
+
q_bucket_size = 512
|
714 |
+
k_bucket_size = 1024
|
715 |
+
|
716 |
+
h = self.heads
|
717 |
+
q = self.to_q(x)
|
718 |
+
context = context if context is not None else x
|
719 |
+
context = context.to(x.dtype)
|
720 |
+
k = self.to_k(context)
|
721 |
+
v = self.to_v(context)
|
722 |
+
del context, x
|
723 |
+
|
724 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
725 |
+
|
726 |
+
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
727 |
+
|
728 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
729 |
+
|
730 |
+
out = self.to_out[0](out)
|
731 |
+
return out
|
732 |
+
|
733 |
+
def forward_sdpa(self, x, context=None, mask=None):
|
734 |
+
h = self.heads
|
735 |
+
q_in = self.to_q(x)
|
736 |
+
context = context if context is not None else x
|
737 |
+
context = context.to(x.dtype)
|
738 |
+
k_in = self.to_k(context)
|
739 |
+
v_in = self.to_v(context)
|
740 |
+
|
741 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
|
742 |
+
del q_in, k_in, v_in
|
743 |
+
|
744 |
+
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
745 |
+
|
746 |
+
out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
747 |
+
|
748 |
+
out = self.to_out[0](out)
|
749 |
+
return out
|
750 |
+
|
751 |
+
def translate_attention_names_from_diffusers(
|
752 |
+
hidden_states: torch.FloatTensor,
|
753 |
+
context: Optional[torch.FloatTensor] = None,
|
754 |
+
mask: Optional[torch.FloatTensor] = None,
|
755 |
+
# HF naming
|
756 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
757 |
+
attention_mask: Optional[torch.FloatTensor] = None
|
758 |
+
):
|
759 |
+
# translate from hugging face diffusers
|
760 |
+
context = context if context is not None else encoder_hidden_states
|
761 |
+
|
762 |
+
# translate from hugging face diffusers
|
763 |
+
mask = mask if mask is not None else attention_mask
|
764 |
+
|
765 |
+
return hidden_states, context, mask
|
766 |
+
|
767 |
+
# feedforward
|
768 |
+
class GEGLU(nn.Module):
|
769 |
+
r"""
|
770 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
771 |
+
|
772 |
+
Parameters:
|
773 |
+
dim_in (`int`): The number of channels in the input.
|
774 |
+
dim_out (`int`): The number of channels in the output.
|
775 |
+
"""
|
776 |
+
|
777 |
+
def __init__(self, dim_in: int, dim_out: int):
|
778 |
+
super().__init__()
|
779 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
780 |
+
|
781 |
+
def gelu(self, gate):
|
782 |
+
if gate.device.type != "mps":
|
783 |
+
return F.gelu(gate)
|
784 |
+
# mps: gelu is not implemented for float16
|
785 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
786 |
+
|
787 |
+
def forward(self, hidden_states):
|
788 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
789 |
+
return hidden_states * self.gelu(gate)
|
790 |
+
|
791 |
+
|
792 |
+
class FeedForward(nn.Module):
|
793 |
+
def __init__(
|
794 |
+
self,
|
795 |
+
dim: int,
|
796 |
+
):
|
797 |
+
super().__init__()
|
798 |
+
inner_dim = int(dim * 4) # mult is always 4
|
799 |
+
|
800 |
+
self.net = nn.ModuleList([])
|
801 |
+
# project in
|
802 |
+
self.net.append(GEGLU(dim, inner_dim))
|
803 |
+
# project dropout
|
804 |
+
self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0
|
805 |
+
# project out
|
806 |
+
self.net.append(nn.Linear(inner_dim, dim))
|
807 |
+
|
808 |
+
def forward(self, hidden_states):
|
809 |
+
for module in self.net:
|
810 |
+
hidden_states = module(hidden_states)
|
811 |
+
return hidden_states
|
812 |
+
|
813 |
+
|
814 |
+
class BasicTransformerBlock(nn.Module):
|
815 |
+
def __init__(
|
816 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
|
817 |
+
):
|
818 |
+
super().__init__()
|
819 |
+
|
820 |
+
# 1. Self-Attn
|
821 |
+
self.attn1 = CrossAttention(
|
822 |
+
query_dim=dim,
|
823 |
+
cross_attention_dim=None,
|
824 |
+
heads=num_attention_heads,
|
825 |
+
dim_head=attention_head_dim,
|
826 |
+
upcast_attention=upcast_attention,
|
827 |
+
)
|
828 |
+
self.ff = FeedForward(dim)
|
829 |
+
|
830 |
+
# 2. Cross-Attn
|
831 |
+
self.attn2 = CrossAttention(
|
832 |
+
query_dim=dim,
|
833 |
+
cross_attention_dim=cross_attention_dim,
|
834 |
+
heads=num_attention_heads,
|
835 |
+
dim_head=attention_head_dim,
|
836 |
+
upcast_attention=upcast_attention,
|
837 |
+
)
|
838 |
+
|
839 |
+
self.norm1 = nn.LayerNorm(dim)
|
840 |
+
self.norm2 = nn.LayerNorm(dim)
|
841 |
+
|
842 |
+
# 3. Feed-forward
|
843 |
+
self.norm3 = nn.LayerNorm(dim)
|
844 |
+
|
845 |
+
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
|
846 |
+
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
|
847 |
+
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)
|
848 |
+
|
849 |
+
def set_use_sdpa(self, sdpa: bool):
|
850 |
+
self.attn1.set_use_sdpa(sdpa)
|
851 |
+
self.attn2.set_use_sdpa(sdpa)
|
852 |
+
|
853 |
+
def forward(self, hidden_states, context=None, timestep=None):
|
854 |
+
# 1. Self-Attention
|
855 |
+
norm_hidden_states = self.norm1(hidden_states)
|
856 |
+
|
857 |
+
hidden_states = self.attn1(norm_hidden_states) + hidden_states
|
858 |
+
|
859 |
+
# 2. Cross-Attention
|
860 |
+
norm_hidden_states = self.norm2(hidden_states)
|
861 |
+
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
|
862 |
+
|
863 |
+
# 3. Feed-forward
|
864 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
865 |
+
|
866 |
+
return hidden_states
|
867 |
+
|
868 |
+
|
869 |
+
class Transformer2DModel(nn.Module):
|
870 |
+
def __init__(
|
871 |
+
self,
|
872 |
+
num_attention_heads: int = 16,
|
873 |
+
attention_head_dim: int = 88,
|
874 |
+
in_channels: Optional[int] = None,
|
875 |
+
cross_attention_dim: Optional[int] = None,
|
876 |
+
use_linear_projection: bool = False,
|
877 |
+
upcast_attention: bool = False,
|
878 |
+
):
|
879 |
+
super().__init__()
|
880 |
+
self.in_channels = in_channels
|
881 |
+
self.num_attention_heads = num_attention_heads
|
882 |
+
self.attention_head_dim = attention_head_dim
|
883 |
+
inner_dim = num_attention_heads * attention_head_dim
|
884 |
+
self.use_linear_projection = use_linear_projection
|
885 |
+
|
886 |
+
self.norm = torch.nn.GroupNorm(num_groups=TRANSFORMER_NORM_NUM_GROUPS, num_channels=in_channels, eps=1e-6, affine=True)
|
887 |
+
|
888 |
+
if use_linear_projection:
|
889 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
890 |
+
else:
|
891 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
892 |
+
|
893 |
+
self.transformer_blocks = nn.ModuleList(
|
894 |
+
[
|
895 |
+
BasicTransformerBlock(
|
896 |
+
inner_dim,
|
897 |
+
num_attention_heads,
|
898 |
+
attention_head_dim,
|
899 |
+
cross_attention_dim=cross_attention_dim,
|
900 |
+
upcast_attention=upcast_attention,
|
901 |
+
)
|
902 |
+
]
|
903 |
+
)
|
904 |
+
|
905 |
+
if use_linear_projection:
|
906 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
907 |
+
else:
|
908 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
909 |
+
|
910 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
911 |
+
for transformer in self.transformer_blocks:
|
912 |
+
transformer.set_use_memory_efficient_attention(xformers, mem_eff)
|
913 |
+
|
914 |
+
def set_use_sdpa(self, sdpa):
|
915 |
+
for transformer in self.transformer_blocks:
|
916 |
+
transformer.set_use_sdpa(sdpa)
|
917 |
+
|
918 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
919 |
+
# 1. Input
|
920 |
+
batch, _, height, weight = hidden_states.shape
|
921 |
+
residual = hidden_states
|
922 |
+
|
923 |
+
hidden_states = self.norm(hidden_states)
|
924 |
+
if not self.use_linear_projection:
|
925 |
+
hidden_states = self.proj_in(hidden_states)
|
926 |
+
inner_dim = hidden_states.shape[1]
|
927 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
928 |
+
else:
|
929 |
+
inner_dim = hidden_states.shape[1]
|
930 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
931 |
+
hidden_states = self.proj_in(hidden_states)
|
932 |
+
|
933 |
+
# 2. Blocks
|
934 |
+
for block in self.transformer_blocks:
|
935 |
+
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
|
936 |
+
|
937 |
+
# 3. Output
|
938 |
+
if not self.use_linear_projection:
|
939 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
940 |
+
hidden_states = self.proj_out(hidden_states)
|
941 |
+
else:
|
942 |
+
hidden_states = self.proj_out(hidden_states)
|
943 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
944 |
+
|
945 |
+
output = hidden_states + residual
|
946 |
+
|
947 |
+
if not return_dict:
|
948 |
+
return (output,)
|
949 |
+
|
950 |
+
return SampleOutput(sample=output)
|
951 |
+
|
952 |
+
|
953 |
+
class CrossAttnDownBlock2D(nn.Module):
|
954 |
+
def __init__(
|
955 |
+
self,
|
956 |
+
in_channels: int,
|
957 |
+
out_channels: int,
|
958 |
+
add_downsample=True,
|
959 |
+
cross_attention_dim=1280,
|
960 |
+
attn_num_head_channels=1,
|
961 |
+
use_linear_projection=False,
|
962 |
+
upcast_attention=False,
|
963 |
+
):
|
964 |
+
super().__init__()
|
965 |
+
self.has_cross_attention = True
|
966 |
+
resnets = []
|
967 |
+
attentions = []
|
968 |
+
|
969 |
+
self.attn_num_head_channels = attn_num_head_channels
|
970 |
+
|
971 |
+
for i in range(LAYERS_PER_BLOCK):
|
972 |
+
in_channels = in_channels if i == 0 else out_channels
|
973 |
+
|
974 |
+
resnets.append(ResnetBlock2D(in_channels=in_channels, out_channels=out_channels))
|
975 |
+
attentions.append(
|
976 |
+
Transformer2DModel(
|
977 |
+
attn_num_head_channels,
|
978 |
+
out_channels // attn_num_head_channels,
|
979 |
+
in_channels=out_channels,
|
980 |
+
cross_attention_dim=cross_attention_dim,
|
981 |
+
use_linear_projection=use_linear_projection,
|
982 |
+
upcast_attention=upcast_attention,
|
983 |
+
)
|
984 |
+
)
|
985 |
+
self.attentions = nn.ModuleList(attentions)
|
986 |
+
self.resnets = nn.ModuleList(resnets)
|
987 |
+
|
988 |
+
if add_downsample:
|
989 |
+
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])
|
990 |
+
else:
|
991 |
+
self.downsamplers = None
|
992 |
+
|
993 |
+
self.gradient_checkpointing = False
|
994 |
+
|
995 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
996 |
+
for attn in self.attentions:
|
997 |
+
attn.set_use_memory_efficient_attention(xformers, mem_eff)
|
998 |
+
|
999 |
+
def set_use_sdpa(self, sdpa):
|
1000 |
+
for attn in self.attentions:
|
1001 |
+
attn.set_use_sdpa(sdpa)
|
1002 |
+
|
1003 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
1004 |
+
output_states = ()
|
1005 |
+
|
1006 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
1007 |
+
if self.training and self.gradient_checkpointing:
|
1008 |
+
|
1009 |
+
def create_custom_forward(module, return_dict=None):
|
1010 |
+
def custom_forward(*inputs):
|
1011 |
+
if return_dict is not None:
|
1012 |
+
return module(*inputs, return_dict=return_dict)
|
1013 |
+
else:
|
1014 |
+
return module(*inputs)
|
1015 |
+
|
1016 |
+
return custom_forward
|
1017 |
+
|
1018 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
1019 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1020 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
1021 |
+
)[0]
|
1022 |
+
else:
|
1023 |
+
hidden_states = resnet(hidden_states, temb)
|
1024 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
1025 |
+
|
1026 |
+
output_states += (hidden_states,)
|
1027 |
+
|
1028 |
+
if self.downsamplers is not None:
|
1029 |
+
for downsampler in self.downsamplers:
|
1030 |
+
hidden_states = downsampler(hidden_states)
|
1031 |
+
|
1032 |
+
output_states += (hidden_states,)
|
1033 |
+
|
1034 |
+
return hidden_states, output_states
|
1035 |
+
|
1036 |
+
|
1037 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
1038 |
+
def __init__(
|
1039 |
+
self,
|
1040 |
+
in_channels: int,
|
1041 |
+
attn_num_head_channels=1,
|
1042 |
+
cross_attention_dim=1280,
|
1043 |
+
use_linear_projection=False,
|
1044 |
+
):
|
1045 |
+
super().__init__()
|
1046 |
+
|
1047 |
+
self.has_cross_attention = True
|
1048 |
+
self.attn_num_head_channels = attn_num_head_channels
|
1049 |
+
|
1050 |
+
# Middle block has two resnets and one attention
|
1051 |
+
resnets = [
|
1052 |
+
ResnetBlock2D(
|
1053 |
+
in_channels=in_channels,
|
1054 |
+
out_channels=in_channels,
|
1055 |
+
),
|
1056 |
+
ResnetBlock2D(
|
1057 |
+
in_channels=in_channels,
|
1058 |
+
out_channels=in_channels,
|
1059 |
+
),
|
1060 |
+
]
|
1061 |
+
attentions = [
|
1062 |
+
Transformer2DModel(
|
1063 |
+
attn_num_head_channels,
|
1064 |
+
in_channels // attn_num_head_channels,
|
1065 |
+
in_channels=in_channels,
|
1066 |
+
cross_attention_dim=cross_attention_dim,
|
1067 |
+
use_linear_projection=use_linear_projection,
|
1068 |
+
)
|
1069 |
+
]
|
1070 |
+
|
1071 |
+
self.attentions = nn.ModuleList(attentions)
|
1072 |
+
self.resnets = nn.ModuleList(resnets)
|
1073 |
+
|
1074 |
+
self.gradient_checkpointing = False
|
1075 |
+
|
1076 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
1077 |
+
for attn in self.attentions:
|
1078 |
+
attn.set_use_memory_efficient_attention(xformers, mem_eff)
|
1079 |
+
|
1080 |
+
def set_use_sdpa(self, sdpa):
|
1081 |
+
for attn in self.attentions:
|
1082 |
+
attn.set_use_sdpa(sdpa)
|
1083 |
+
|
1084 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
1085 |
+
for i, resnet in enumerate(self.resnets):
|
1086 |
+
attn = None if i == 0 else self.attentions[i - 1]
|
1087 |
+
|
1088 |
+
if self.training and self.gradient_checkpointing:
|
1089 |
+
|
1090 |
+
def create_custom_forward(module, return_dict=None):
|
1091 |
+
def custom_forward(*inputs):
|
1092 |
+
if return_dict is not None:
|
1093 |
+
return module(*inputs, return_dict=return_dict)
|
1094 |
+
else:
|
1095 |
+
return module(*inputs)
|
1096 |
+
|
1097 |
+
return custom_forward
|
1098 |
+
|
1099 |
+
if attn is not None:
|
1100 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1101 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
1102 |
+
)[0]
|
1103 |
+
|
1104 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
1105 |
+
else:
|
1106 |
+
if attn is not None:
|
1107 |
+
hidden_states = attn(hidden_states, encoder_hidden_states).sample
|
1108 |
+
hidden_states = resnet(hidden_states, temb)
|
1109 |
+
|
1110 |
+
return hidden_states
|
1111 |
+
|
1112 |
+
|
1113 |
+
class Upsample2D(nn.Module):
|
1114 |
+
def __init__(self, channels, out_channels):
|
1115 |
+
super().__init__()
|
1116 |
+
self.channels = channels
|
1117 |
+
self.out_channels = out_channels
|
1118 |
+
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
1119 |
+
|
1120 |
+
def forward(self, hidden_states, output_size):
|
1121 |
+
assert hidden_states.shape[1] == self.channels
|
1122 |
+
|
1123 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
1124 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
1125 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
1126 |
+
dtype = hidden_states.dtype
|
1127 |
+
if dtype == torch.bfloat16:
|
1128 |
+
hidden_states = hidden_states.to(torch.float32)
|
1129 |
+
|
1130 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
1131 |
+
if hidden_states.shape[0] >= 64:
|
1132 |
+
hidden_states = hidden_states.contiguous()
|
1133 |
+
|
1134 |
+
# if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
|
1135 |
+
if output_size is None:
|
1136 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
1137 |
+
else:
|
1138 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
1139 |
+
|
1140 |
+
# If the input is bfloat16, we cast back to bfloat16
|
1141 |
+
if dtype == torch.bfloat16:
|
1142 |
+
hidden_states = hidden_states.to(dtype)
|
1143 |
+
|
1144 |
+
hidden_states = self.conv(hidden_states)
|
1145 |
+
|
1146 |
+
return hidden_states
|
1147 |
+
|
1148 |
+
|
1149 |
+
class UpBlock2D(nn.Module):
|
1150 |
+
def __init__(
|
1151 |
+
self,
|
1152 |
+
in_channels: int,
|
1153 |
+
prev_output_channel: int,
|
1154 |
+
out_channels: int,
|
1155 |
+
add_upsample=True,
|
1156 |
+
):
|
1157 |
+
super().__init__()
|
1158 |
+
|
1159 |
+
self.has_cross_attention = False
|
1160 |
+
resnets = []
|
1161 |
+
|
1162 |
+
for i in range(LAYERS_PER_BLOCK_UP):
|
1163 |
+
res_skip_channels = in_channels if (i == LAYERS_PER_BLOCK_UP - 1) else out_channels
|
1164 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1165 |
+
|
1166 |
+
resnets.append(
|
1167 |
+
ResnetBlock2D(
|
1168 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1169 |
+
out_channels=out_channels,
|
1170 |
+
)
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
self.resnets = nn.ModuleList(resnets)
|
1174 |
+
|
1175 |
+
if add_upsample:
|
1176 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
|
1177 |
+
else:
|
1178 |
+
self.upsamplers = None
|
1179 |
+
|
1180 |
+
self.gradient_checkpointing = False
|
1181 |
+
|
1182 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
1183 |
+
pass
|
1184 |
+
|
1185 |
+
def set_use_sdpa(self, sdpa):
|
1186 |
+
pass
|
1187 |
+
|
1188 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
1189 |
+
for resnet in self.resnets:
|
1190 |
+
# pop res hidden states
|
1191 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1192 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1193 |
+
|
1194 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1195 |
+
|
1196 |
+
if self.training and self.gradient_checkpointing:
|
1197 |
+
|
1198 |
+
def create_custom_forward(module):
|
1199 |
+
def custom_forward(*inputs):
|
1200 |
+
return module(*inputs)
|
1201 |
+
|
1202 |
+
return custom_forward
|
1203 |
+
|
1204 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
1205 |
+
else:
|
1206 |
+
hidden_states = resnet(hidden_states, temb)
|
1207 |
+
|
1208 |
+
if self.upsamplers is not None:
|
1209 |
+
for upsampler in self.upsamplers:
|
1210 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1211 |
+
|
1212 |
+
return hidden_states
|
1213 |
+
|
1214 |
+
|
1215 |
+
class CrossAttnUpBlock2D(nn.Module):
|
1216 |
+
def __init__(
|
1217 |
+
self,
|
1218 |
+
in_channels: int,
|
1219 |
+
out_channels: int,
|
1220 |
+
prev_output_channel: int,
|
1221 |
+
attn_num_head_channels=1,
|
1222 |
+
cross_attention_dim=1280,
|
1223 |
+
add_upsample=True,
|
1224 |
+
use_linear_projection=False,
|
1225 |
+
upcast_attention=False,
|
1226 |
+
):
|
1227 |
+
super().__init__()
|
1228 |
+
resnets = []
|
1229 |
+
attentions = []
|
1230 |
+
|
1231 |
+
self.has_cross_attention = True
|
1232 |
+
self.attn_num_head_channels = attn_num_head_channels
|
1233 |
+
|
1234 |
+
for i in range(LAYERS_PER_BLOCK_UP):
|
1235 |
+
res_skip_channels = in_channels if (i == LAYERS_PER_BLOCK_UP - 1) else out_channels
|
1236 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1237 |
+
|
1238 |
+
resnets.append(
|
1239 |
+
ResnetBlock2D(
|
1240 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1241 |
+
out_channels=out_channels,
|
1242 |
+
)
|
1243 |
+
)
|
1244 |
+
attentions.append(
|
1245 |
+
Transformer2DModel(
|
1246 |
+
attn_num_head_channels,
|
1247 |
+
out_channels // attn_num_head_channels,
|
1248 |
+
in_channels=out_channels,
|
1249 |
+
cross_attention_dim=cross_attention_dim,
|
1250 |
+
use_linear_projection=use_linear_projection,
|
1251 |
+
upcast_attention=upcast_attention,
|
1252 |
+
)
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
self.attentions = nn.ModuleList(attentions)
|
1256 |
+
self.resnets = nn.ModuleList(resnets)
|
1257 |
+
|
1258 |
+
if add_upsample:
|
1259 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
|
1260 |
+
else:
|
1261 |
+
self.upsamplers = None
|
1262 |
+
|
1263 |
+
self.gradient_checkpointing = False
|
1264 |
+
|
1265 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
1266 |
+
for attn in self.attentions:
|
1267 |
+
attn.set_use_memory_efficient_attention(xformers, mem_eff)
|
1268 |
+
|
1269 |
+
def set_use_sdpa(self, sdpa):
|
1270 |
+
for attn in self.attentions:
|
1271 |
+
attn.set_use_sdpa(sdpa)
|
1272 |
+
|
1273 |
+
def forward(
|
1274 |
+
self,
|
1275 |
+
hidden_states,
|
1276 |
+
res_hidden_states_tuple,
|
1277 |
+
temb=None,
|
1278 |
+
encoder_hidden_states=None,
|
1279 |
+
upsample_size=None,
|
1280 |
+
):
|
1281 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
1282 |
+
# pop res hidden states
|
1283 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1284 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1285 |
+
|
1286 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1287 |
+
|
1288 |
+
if self.training and self.gradient_checkpointing:
|
1289 |
+
|
1290 |
+
def create_custom_forward(module, return_dict=None):
|
1291 |
+
def custom_forward(*inputs):
|
1292 |
+
if return_dict is not None:
|
1293 |
+
return module(*inputs, return_dict=return_dict)
|
1294 |
+
else:
|
1295 |
+
return module(*inputs)
|
1296 |
+
|
1297 |
+
return custom_forward
|
1298 |
+
|
1299 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
1300 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1301 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
|
1302 |
+
)[0]
|
1303 |
+
else:
|
1304 |
+
hidden_states = resnet(hidden_states, temb)
|
1305 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
1306 |
+
|
1307 |
+
if self.upsamplers is not None:
|
1308 |
+
for upsampler in self.upsamplers:
|
1309 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1310 |
+
|
1311 |
+
return hidden_states
|
1312 |
+
|
1313 |
+
|
1314 |
+
def get_down_block(
|
1315 |
+
down_block_type,
|
1316 |
+
in_channels,
|
1317 |
+
out_channels,
|
1318 |
+
add_downsample,
|
1319 |
+
attn_num_head_channels,
|
1320 |
+
cross_attention_dim,
|
1321 |
+
use_linear_projection,
|
1322 |
+
upcast_attention,
|
1323 |
+
):
|
1324 |
+
if down_block_type == "DownBlock2D":
|
1325 |
+
return DownBlock2D(
|
1326 |
+
in_channels=in_channels,
|
1327 |
+
out_channels=out_channels,
|
1328 |
+
add_downsample=add_downsample,
|
1329 |
+
)
|
1330 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
1331 |
+
return CrossAttnDownBlock2D(
|
1332 |
+
in_channels=in_channels,
|
1333 |
+
out_channels=out_channels,
|
1334 |
+
add_downsample=add_downsample,
|
1335 |
+
cross_attention_dim=cross_attention_dim,
|
1336 |
+
attn_num_head_channels=attn_num_head_channels,
|
1337 |
+
use_linear_projection=use_linear_projection,
|
1338 |
+
upcast_attention=upcast_attention,
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
|
1342 |
+
def get_up_block(
|
1343 |
+
up_block_type,
|
1344 |
+
in_channels,
|
1345 |
+
out_channels,
|
1346 |
+
prev_output_channel,
|
1347 |
+
add_upsample,
|
1348 |
+
attn_num_head_channels,
|
1349 |
+
cross_attention_dim=None,
|
1350 |
+
use_linear_projection=False,
|
1351 |
+
upcast_attention=False,
|
1352 |
+
):
|
1353 |
+
if up_block_type == "UpBlock2D":
|
1354 |
+
return UpBlock2D(
|
1355 |
+
in_channels=in_channels,
|
1356 |
+
prev_output_channel=prev_output_channel,
|
1357 |
+
out_channels=out_channels,
|
1358 |
+
add_upsample=add_upsample,
|
1359 |
+
)
|
1360 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
1361 |
+
return CrossAttnUpBlock2D(
|
1362 |
+
in_channels=in_channels,
|
1363 |
+
out_channels=out_channels,
|
1364 |
+
prev_output_channel=prev_output_channel,
|
1365 |
+
attn_num_head_channels=attn_num_head_channels,
|
1366 |
+
cross_attention_dim=cross_attention_dim,
|
1367 |
+
add_upsample=add_upsample,
|
1368 |
+
use_linear_projection=use_linear_projection,
|
1369 |
+
upcast_attention=upcast_attention,
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
|
1373 |
+
class UNet2DConditionModel(nn.Module):
|
1374 |
+
_supports_gradient_checkpointing = True
|
1375 |
+
|
1376 |
+
def __init__(
|
1377 |
+
self,
|
1378 |
+
sample_size: Optional[int] = None,
|
1379 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
1380 |
+
cross_attention_dim: int = 1280,
|
1381 |
+
use_linear_projection: bool = False,
|
1382 |
+
upcast_attention: bool = False,
|
1383 |
+
**kwargs,
|
1384 |
+
):
|
1385 |
+
super().__init__()
|
1386 |
+
assert sample_size is not None, "sample_size must be specified"
|
1387 |
+
logger.info(
|
1388 |
+
f"UNet2DConditionModel: {sample_size}, {attention_head_dim}, {cross_attention_dim}, {use_linear_projection}, {upcast_attention}"
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
# 外部からの参照用に定義しておく
|
1392 |
+
self.in_channels = IN_CHANNELS
|
1393 |
+
self.out_channels = OUT_CHANNELS
|
1394 |
+
|
1395 |
+
self.sample_size = sample_size
|
1396 |
+
self.prepare_config(sample_size=sample_size)
|
1397 |
+
|
1398 |
+
# state_dictの書式が変わるのでmoduleの持ち方は変えられない
|
1399 |
+
|
1400 |
+
# input
|
1401 |
+
self.conv_in = nn.Conv2d(IN_CHANNELS, BLOCK_OUT_CHANNELS[0], kernel_size=3, padding=(1, 1))
|
1402 |
+
|
1403 |
+
# time
|
1404 |
+
self.time_proj = Timesteps(BLOCK_OUT_CHANNELS[0], TIME_EMBED_FLIP_SIN_TO_COS, TIME_EMBED_FREQ_SHIFT)
|
1405 |
+
|
1406 |
+
self.time_embedding = TimestepEmbedding(TIMESTEP_INPUT_DIM, TIME_EMBED_DIM)
|
1407 |
+
|
1408 |
+
self.down_blocks = nn.ModuleList([])
|
1409 |
+
self.mid_block = None
|
1410 |
+
self.up_blocks = nn.ModuleList([])
|
1411 |
+
|
1412 |
+
if isinstance(attention_head_dim, int):
|
1413 |
+
attention_head_dim = (attention_head_dim,) * 4
|
1414 |
+
|
1415 |
+
# down
|
1416 |
+
output_channel = BLOCK_OUT_CHANNELS[0]
|
1417 |
+
for i, down_block_type in enumerate(DOWN_BLOCK_TYPES):
|
1418 |
+
input_channel = output_channel
|
1419 |
+
output_channel = BLOCK_OUT_CHANNELS[i]
|
1420 |
+
is_final_block = i == len(BLOCK_OUT_CHANNELS) - 1
|
1421 |
+
|
1422 |
+
down_block = get_down_block(
|
1423 |
+
down_block_type,
|
1424 |
+
in_channels=input_channel,
|
1425 |
+
out_channels=output_channel,
|
1426 |
+
add_downsample=not is_final_block,
|
1427 |
+
attn_num_head_channels=attention_head_dim[i],
|
1428 |
+
cross_attention_dim=cross_attention_dim,
|
1429 |
+
use_linear_projection=use_linear_projection,
|
1430 |
+
upcast_attention=upcast_attention,
|
1431 |
+
)
|
1432 |
+
self.down_blocks.append(down_block)
|
1433 |
+
|
1434 |
+
# mid
|
1435 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
1436 |
+
in_channels=BLOCK_OUT_CHANNELS[-1],
|
1437 |
+
attn_num_head_channels=attention_head_dim[-1],
|
1438 |
+
cross_attention_dim=cross_attention_dim,
|
1439 |
+
use_linear_projection=use_linear_projection,
|
1440 |
+
)
|
1441 |
+
|
1442 |
+
# count how many layers upsample the images
|
1443 |
+
self.num_upsamplers = 0
|
1444 |
+
|
1445 |
+
# up
|
1446 |
+
reversed_block_out_channels = list(reversed(BLOCK_OUT_CHANNELS))
|
1447 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
1448 |
+
output_channel = reversed_block_out_channels[0]
|
1449 |
+
for i, up_block_type in enumerate(UP_BLOCK_TYPES):
|
1450 |
+
is_final_block = i == len(BLOCK_OUT_CHANNELS) - 1
|
1451 |
+
|
1452 |
+
prev_output_channel = output_channel
|
1453 |
+
output_channel = reversed_block_out_channels[i]
|
1454 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(BLOCK_OUT_CHANNELS) - 1)]
|
1455 |
+
|
1456 |
+
# add upsample block for all BUT final layer
|
1457 |
+
if not is_final_block:
|
1458 |
+
add_upsample = True
|
1459 |
+
self.num_upsamplers += 1
|
1460 |
+
else:
|
1461 |
+
add_upsample = False
|
1462 |
+
|
1463 |
+
up_block = get_up_block(
|
1464 |
+
up_block_type,
|
1465 |
+
in_channels=input_channel,
|
1466 |
+
out_channels=output_channel,
|
1467 |
+
prev_output_channel=prev_output_channel,
|
1468 |
+
add_upsample=add_upsample,
|
1469 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
1470 |
+
cross_attention_dim=cross_attention_dim,
|
1471 |
+
use_linear_projection=use_linear_projection,
|
1472 |
+
upcast_attention=upcast_attention,
|
1473 |
+
)
|
1474 |
+
self.up_blocks.append(up_block)
|
1475 |
+
prev_output_channel = output_channel
|
1476 |
+
|
1477 |
+
# out
|
1478 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=BLOCK_OUT_CHANNELS[0], num_groups=NORM_GROUPS, eps=NORM_EPS)
|
1479 |
+
self.conv_act = nn.SiLU()
|
1480 |
+
self.conv_out = nn.Conv2d(BLOCK_OUT_CHANNELS[0], OUT_CHANNELS, kernel_size=3, padding=1)
|
1481 |
+
|
1482 |
+
# region diffusers compatibility
|
1483 |
+
def prepare_config(self, *args, **kwargs):
|
1484 |
+
self.config = SimpleNamespace(**kwargs)
|
1485 |
+
|
1486 |
+
@property
|
1487 |
+
def dtype(self) -> torch.dtype:
|
1488 |
+
# `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
1489 |
+
return get_parameter_dtype(self)
|
1490 |
+
|
1491 |
+
@property
|
1492 |
+
def device(self) -> torch.device:
|
1493 |
+
# `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
|
1494 |
+
return get_parameter_device(self)
|
1495 |
+
|
1496 |
+
def set_attention_slice(self, slice_size):
|
1497 |
+
raise NotImplementedError("Attention slicing is not supported for this model.")
|
1498 |
+
|
1499 |
+
def is_gradient_checkpointing(self) -> bool:
|
1500 |
+
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
|
1501 |
+
|
1502 |
+
def enable_gradient_checkpointing(self):
|
1503 |
+
self.set_gradient_checkpointing(value=True)
|
1504 |
+
|
1505 |
+
def disable_gradient_checkpointing(self):
|
1506 |
+
self.set_gradient_checkpointing(value=False)
|
1507 |
+
|
1508 |
+
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
|
1509 |
+
modules = self.down_blocks + [self.mid_block] + self.up_blocks
|
1510 |
+
for module in modules:
|
1511 |
+
module.set_use_memory_efficient_attention(xformers, mem_eff)
|
1512 |
+
|
1513 |
+
def set_use_sdpa(self, sdpa: bool) -> None:
|
1514 |
+
modules = self.down_blocks + [self.mid_block] + self.up_blocks
|
1515 |
+
for module in modules:
|
1516 |
+
module.set_use_sdpa(sdpa)
|
1517 |
+
|
1518 |
+
def set_gradient_checkpointing(self, value=False):
|
1519 |
+
modules = self.down_blocks + [self.mid_block] + self.up_blocks
|
1520 |
+
for module in modules:
|
1521 |
+
logger.info(f"{module.__class__.__name__} {module.gradient_checkpointing} -> {value}")
|
1522 |
+
module.gradient_checkpointing = value
|
1523 |
+
|
1524 |
+
# endregion
|
1525 |
+
|
1526 |
+
def forward(
|
1527 |
+
self,
|
1528 |
+
sample: torch.FloatTensor,
|
1529 |
+
timestep: Union[torch.Tensor, float, int],
|
1530 |
+
encoder_hidden_states: torch.Tensor,
|
1531 |
+
class_labels: Optional[torch.Tensor] = None,
|
1532 |
+
return_dict: bool = True,
|
1533 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1534 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1535 |
+
) -> Union[Dict, Tuple]:
|
1536 |
+
r"""
|
1537 |
+
Args:
|
1538 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
1539 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
1540 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
1541 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1542 |
+
Whether or not to return a dict instead of a plain tuple.
|
1543 |
+
|
1544 |
+
Returns:
|
1545 |
+
`SampleOutput` or `tuple`:
|
1546 |
+
`SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
1547 |
+
"""
|
1548 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1549 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
1550 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1551 |
+
# on the fly if necessary.
|
1552 |
+
# デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある
|
1553 |
+
# ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する
|
1554 |
+
# 多分画質が悪くなるので、64で割り切れるようにしておくのが良い
|
1555 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1556 |
+
|
1557 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1558 |
+
# 64で割り切れないときはupsamplerにサイズを伝える
|
1559 |
+
forward_upsample_size = False
|
1560 |
+
upsample_size = None
|
1561 |
+
|
1562 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
1563 |
+
# logger.info("Forward upsample size to force interpolation output size.")
|
1564 |
+
forward_upsample_size = True
|
1565 |
+
|
1566 |
+
# 1. time
|
1567 |
+
timesteps = timestep
|
1568 |
+
timesteps = self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理
|
1569 |
+
|
1570 |
+
t_emb = self.time_proj(timesteps)
|
1571 |
+
|
1572 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
1573 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1574 |
+
# there might be better ways to encapsulate this.
|
1575 |
+
# timestepsは重みを含まないので常にfloat32のテンソルを返す
|
1576 |
+
# しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある
|
1577 |
+
# time_projでキャストしておけばいいんじゃね?
|
1578 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
1579 |
+
emb = self.time_embedding(t_emb)
|
1580 |
+
|
1581 |
+
# 2. pre-process
|
1582 |
+
sample = self.conv_in(sample)
|
1583 |
+
|
1584 |
+
down_block_res_samples = (sample,)
|
1585 |
+
for downsample_block in self.down_blocks:
|
1586 |
+
# downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、
|
1587 |
+
# まあこちらのほうがわかりやすいかもしれない
|
1588 |
+
if downsample_block.has_cross_attention:
|
1589 |
+
sample, res_samples = downsample_block(
|
1590 |
+
hidden_states=sample,
|
1591 |
+
temb=emb,
|
1592 |
+
encoder_hidden_states=encoder_hidden_states,
|
1593 |
+
)
|
1594 |
+
else:
|
1595 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1596 |
+
|
1597 |
+
down_block_res_samples += res_samples
|
1598 |
+
|
1599 |
+
# skip connectionにControlNetの出力を追加する
|
1600 |
+
if down_block_additional_residuals is not None:
|
1601 |
+
down_block_res_samples = list(down_block_res_samples)
|
1602 |
+
for i in range(len(down_block_res_samples)):
|
1603 |
+
down_block_res_samples[i] += down_block_additional_residuals[i]
|
1604 |
+
down_block_res_samples = tuple(down_block_res_samples)
|
1605 |
+
|
1606 |
+
# 4. mid
|
1607 |
+
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
|
1608 |
+
|
1609 |
+
# ControlNetの出力を追加する
|
1610 |
+
if mid_block_additional_residual is not None:
|
1611 |
+
sample += mid_block_additional_residual
|
1612 |
+
|
1613 |
+
# 5. up
|
1614 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1615 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1616 |
+
|
1617 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1618 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection
|
1619 |
+
|
1620 |
+
# if we have not reached the final block and need to forward the upsample size, we do it here
|
1621 |
+
# 前述のように最後のブロック以外ではupsample_sizeを伝える
|
1622 |
+
if not is_final_block and forward_upsample_size:
|
1623 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1624 |
+
|
1625 |
+
if upsample_block.has_cross_attention:
|
1626 |
+
sample = upsample_block(
|
1627 |
+
hidden_states=sample,
|
1628 |
+
temb=emb,
|
1629 |
+
res_hidden_states_tuple=res_samples,
|
1630 |
+
encoder_hidden_states=encoder_hidden_states,
|
1631 |
+
upsample_size=upsample_size,
|
1632 |
+
)
|
1633 |
+
else:
|
1634 |
+
sample = upsample_block(
|
1635 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1636 |
+
)
|
1637 |
+
|
1638 |
+
# 6. post-process
|
1639 |
+
sample = self.conv_norm_out(sample)
|
1640 |
+
sample = self.conv_act(sample)
|
1641 |
+
sample = self.conv_out(sample)
|
1642 |
+
|
1643 |
+
if not return_dict:
|
1644 |
+
return (sample,)
|
1645 |
+
|
1646 |
+
return SampleOutput(sample=sample)
|
1647 |
+
|
1648 |
+
def handle_unusual_timesteps(self, sample, timesteps):
|
1649 |
+
r"""
|
1650 |
+
timestampsがTensorでない場合、Tensorに変換する。またOnnx/Core MLと互換性のあるようにbatchサイズまでbroadcastする。
|
1651 |
+
"""
|
1652 |
+
if not torch.is_tensor(timesteps):
|
1653 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1654 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
1655 |
+
is_mps = sample.device.type == "mps"
|
1656 |
+
if isinstance(timesteps, float):
|
1657 |
+
dtype = torch.float32 if is_mps else torch.float64
|
1658 |
+
else:
|
1659 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1660 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1661 |
+
elif len(timesteps.shape) == 0:
|
1662 |
+
timesteps = timesteps[None].to(sample.device)
|
1663 |
+
|
1664 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1665 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1666 |
+
|
1667 |
+
return timesteps
|
1668 |
+
|
1669 |
+
|
1670 |
+
class InferUNet2DConditionModel:
|
1671 |
+
def __init__(self, original_unet: UNet2DConditionModel):
|
1672 |
+
self.delegate = original_unet
|
1673 |
+
|
1674 |
+
# override original model's forward method: because forward is not called by `__call__`
|
1675 |
+
# overriding `__call__` is not enough, because nn.Module.forward has a special handling
|
1676 |
+
self.delegate.forward = self.forward
|
1677 |
+
|
1678 |
+
# override original model's up blocks' forward method
|
1679 |
+
for up_block in self.delegate.up_blocks:
|
1680 |
+
if up_block.__class__.__name__ == "UpBlock2D":
|
1681 |
+
|
1682 |
+
def resnet_wrapper(func, block):
|
1683 |
+
def forward(*args, **kwargs):
|
1684 |
+
return func(block, *args, **kwargs)
|
1685 |
+
|
1686 |
+
return forward
|
1687 |
+
|
1688 |
+
up_block.forward = resnet_wrapper(self.up_block_forward, up_block)
|
1689 |
+
|
1690 |
+
elif up_block.__class__.__name__ == "CrossAttnUpBlock2D":
|
1691 |
+
|
1692 |
+
def cross_attn_up_wrapper(func, block):
|
1693 |
+
def forward(*args, **kwargs):
|
1694 |
+
return func(block, *args, **kwargs)
|
1695 |
+
|
1696 |
+
return forward
|
1697 |
+
|
1698 |
+
up_block.forward = cross_attn_up_wrapper(self.cross_attn_up_block_forward, up_block)
|
1699 |
+
|
1700 |
+
# Deep Shrink
|
1701 |
+
self.ds_depth_1 = None
|
1702 |
+
self.ds_depth_2 = None
|
1703 |
+
self.ds_timesteps_1 = None
|
1704 |
+
self.ds_timesteps_2 = None
|
1705 |
+
self.ds_ratio = None
|
1706 |
+
|
1707 |
+
# call original model's methods
|
1708 |
+
def __getattr__(self, name):
|
1709 |
+
return getattr(self.delegate, name)
|
1710 |
+
|
1711 |
+
def __call__(self, *args, **kwargs):
|
1712 |
+
return self.delegate(*args, **kwargs)
|
1713 |
+
|
1714 |
+
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5):
|
1715 |
+
if ds_depth_1 is None:
|
1716 |
+
logger.info("Deep Shrink is disabled.")
|
1717 |
+
self.ds_depth_1 = None
|
1718 |
+
self.ds_timesteps_1 = None
|
1719 |
+
self.ds_depth_2 = None
|
1720 |
+
self.ds_timesteps_2 = None
|
1721 |
+
self.ds_ratio = None
|
1722 |
+
else:
|
1723 |
+
logger.info(
|
1724 |
+
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]"
|
1725 |
+
)
|
1726 |
+
self.ds_depth_1 = ds_depth_1
|
1727 |
+
self.ds_timesteps_1 = ds_timesteps_1
|
1728 |
+
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1
|
1729 |
+
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000
|
1730 |
+
self.ds_ratio = ds_ratio
|
1731 |
+
|
1732 |
+
def up_block_forward(self, _self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
1733 |
+
for resnet in _self.resnets:
|
1734 |
+
# pop res hidden states
|
1735 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1736 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1737 |
+
|
1738 |
+
# Deep Shrink
|
1739 |
+
if res_hidden_states.shape[-2:] != hidden_states.shape[-2:]:
|
1740 |
+
hidden_states = resize_like(hidden_states, res_hidden_states)
|
1741 |
+
|
1742 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1743 |
+
hidden_states = resnet(hidden_states, temb)
|
1744 |
+
|
1745 |
+
if _self.upsamplers is not None:
|
1746 |
+
for upsampler in _self.upsamplers:
|
1747 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1748 |
+
|
1749 |
+
return hidden_states
|
1750 |
+
|
1751 |
+
def cross_attn_up_block_forward(
|
1752 |
+
self,
|
1753 |
+
_self,
|
1754 |
+
hidden_states,
|
1755 |
+
res_hidden_states_tuple,
|
1756 |
+
temb=None,
|
1757 |
+
encoder_hidden_states=None,
|
1758 |
+
upsample_size=None,
|
1759 |
+
):
|
1760 |
+
for resnet, attn in zip(_self.resnets, _self.attentions):
|
1761 |
+
# pop res hidden states
|
1762 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1763 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1764 |
+
|
1765 |
+
# Deep Shrink
|
1766 |
+
if res_hidden_states.shape[-2:] != hidden_states.shape[-2:]:
|
1767 |
+
hidden_states = resize_like(hidden_states, res_hidden_states)
|
1768 |
+
|
1769 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1770 |
+
hidden_states = resnet(hidden_states, temb)
|
1771 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
1772 |
+
|
1773 |
+
if _self.upsamplers is not None:
|
1774 |
+
for upsampler in _self.upsamplers:
|
1775 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1776 |
+
|
1777 |
+
return hidden_states
|
1778 |
+
|
1779 |
+
def forward(
|
1780 |
+
self,
|
1781 |
+
sample: torch.FloatTensor,
|
1782 |
+
timestep: Union[torch.Tensor, float, int],
|
1783 |
+
encoder_hidden_states: torch.Tensor,
|
1784 |
+
class_labels: Optional[torch.Tensor] = None,
|
1785 |
+
return_dict: bool = True,
|
1786 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1787 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1788 |
+
) -> Union[Dict, Tuple]:
|
1789 |
+
r"""
|
1790 |
+
current implementation is a copy of `UNet2DConditionModel.forward()` with Deep Shrink.
|
1791 |
+
"""
|
1792 |
+
|
1793 |
+
r"""
|
1794 |
+
Args:
|
1795 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
1796 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
1797 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
1798 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1799 |
+
Whether or not to return a dict instead of a plain tuple.
|
1800 |
+
|
1801 |
+
Returns:
|
1802 |
+
`SampleOutput` or `tuple`:
|
1803 |
+
`SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
1804 |
+
"""
|
1805 |
+
|
1806 |
+
_self = self.delegate
|
1807 |
+
|
1808 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1809 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
1810 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1811 |
+
# on the fly if necessary.
|
1812 |
+
# デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある
|
1813 |
+
# ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する
|
1814 |
+
# 多分画質が悪くなるので、64で割り切れるようにしておくのが良い
|
1815 |
+
default_overall_up_factor = 2**_self.num_upsamplers
|
1816 |
+
|
1817 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1818 |
+
# 64で割り切れないときはupsamplerにサイズを伝える
|
1819 |
+
forward_upsample_size = False
|
1820 |
+
upsample_size = None
|
1821 |
+
|
1822 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
1823 |
+
# logger.info("Forward upsample size to force interpolation output size.")
|
1824 |
+
forward_upsample_size = True
|
1825 |
+
|
1826 |
+
# 1. time
|
1827 |
+
timesteps = timestep
|
1828 |
+
timesteps = _self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理
|
1829 |
+
|
1830 |
+
t_emb = _self.time_proj(timesteps)
|
1831 |
+
|
1832 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
1833 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1834 |
+
# there might be better ways to encapsulate this.
|
1835 |
+
# timestepsは重みを含まないので常にfloat32のテンソルを返す
|
1836 |
+
# しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある
|
1837 |
+
# time_projでキャストしておけばいいんじゃね?
|
1838 |
+
t_emb = t_emb.to(dtype=_self.dtype)
|
1839 |
+
emb = _self.time_embedding(t_emb)
|
1840 |
+
|
1841 |
+
# 2. pre-process
|
1842 |
+
sample = _self.conv_in(sample)
|
1843 |
+
|
1844 |
+
down_block_res_samples = (sample,)
|
1845 |
+
for depth, downsample_block in enumerate(_self.down_blocks):
|
1846 |
+
# Deep Shrink
|
1847 |
+
if self.ds_depth_1 is not None:
|
1848 |
+
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or (
|
1849 |
+
self.ds_depth_2 is not None
|
1850 |
+
and depth == self.ds_depth_2
|
1851 |
+
and timesteps[0] < self.ds_timesteps_1
|
1852 |
+
and timesteps[0] >= self.ds_timesteps_2
|
1853 |
+
):
|
1854 |
+
org_dtype = sample.dtype
|
1855 |
+
if org_dtype == torch.bfloat16:
|
1856 |
+
sample = sample.to(torch.float32)
|
1857 |
+
sample = F.interpolate(sample, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype)
|
1858 |
+
|
1859 |
+
# downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、
|
1860 |
+
# まあこちらのほうがわかりやすいかもしれない
|
1861 |
+
if downsample_block.has_cross_attention:
|
1862 |
+
sample, res_samples = downsample_block(
|
1863 |
+
hidden_states=sample,
|
1864 |
+
temb=emb,
|
1865 |
+
encoder_hidden_states=encoder_hidden_states,
|
1866 |
+
)
|
1867 |
+
else:
|
1868 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1869 |
+
|
1870 |
+
down_block_res_samples += res_samples
|
1871 |
+
|
1872 |
+
# skip connectionにControlNetの出力を追加する
|
1873 |
+
if down_block_additional_residuals is not None:
|
1874 |
+
down_block_res_samples = list(down_block_res_samples)
|
1875 |
+
for i in range(len(down_block_res_samples)):
|
1876 |
+
down_block_res_samples[i] += down_block_additional_residuals[i]
|
1877 |
+
down_block_res_samples = tuple(down_block_res_samples)
|
1878 |
+
|
1879 |
+
# 4. mid
|
1880 |
+
sample = _self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
|
1881 |
+
|
1882 |
+
# ControlNetの出力を追加する
|
1883 |
+
if mid_block_additional_residual is not None:
|
1884 |
+
sample += mid_block_additional_residual
|
1885 |
+
|
1886 |
+
# 5. up
|
1887 |
+
for i, upsample_block in enumerate(_self.up_blocks):
|
1888 |
+
is_final_block = i == len(_self.up_blocks) - 1
|
1889 |
+
|
1890 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1891 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection
|
1892 |
+
|
1893 |
+
# if we have not reached the final block and need to forward the upsample size, we do it here
|
1894 |
+
# 前述のように最後のブロック以外ではupsample_sizeを伝える
|
1895 |
+
if not is_final_block and forward_upsample_size:
|
1896 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1897 |
+
|
1898 |
+
if upsample_block.has_cross_attention:
|
1899 |
+
sample = upsample_block(
|
1900 |
+
hidden_states=sample,
|
1901 |
+
temb=emb,
|
1902 |
+
res_hidden_states_tuple=res_samples,
|
1903 |
+
encoder_hidden_states=encoder_hidden_states,
|
1904 |
+
upsample_size=upsample_size,
|
1905 |
+
)
|
1906 |
+
else:
|
1907 |
+
sample = upsample_block(
|
1908 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1909 |
+
)
|
1910 |
+
|
1911 |
+
# 6. post-process
|
1912 |
+
sample = _self.conv_norm_out(sample)
|
1913 |
+
sample = _self.conv_act(sample)
|
1914 |
+
sample = _self.conv_out(sample)
|
1915 |
+
|
1916 |
+
if not return_dict:
|
1917 |
+
return (sample,)
|
1918 |
+
|
1919 |
+
return SampleOutput(sample=sample)
|