|
import os |
|
import argparse |
|
import torch |
|
from accelerate import DeepSpeedPlugin, Accelerator |
|
|
|
from .utils import setup_logging |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def add_deepspeed_arguments(parser: argparse.ArgumentParser): |
|
|
|
parser.add_argument("--deepspeed", action="store_true", help="enable deepspeed training") |
|
parser.add_argument("--zero_stage", type=int, default=2, choices=[0, 1, 2, 3], help="Possible options are 0,1,2,3.") |
|
parser.add_argument( |
|
"--offload_optimizer_device", |
|
type=str, |
|
default=None, |
|
choices=[None, "cpu", "nvme"], |
|
help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3.", |
|
) |
|
parser.add_argument( |
|
"--offload_optimizer_nvme_path", |
|
type=str, |
|
default=None, |
|
help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.", |
|
) |
|
parser.add_argument( |
|
"--offload_param_device", |
|
type=str, |
|
default=None, |
|
choices=[None, "cpu", "nvme"], |
|
help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3.", |
|
) |
|
parser.add_argument( |
|
"--offload_param_nvme_path", |
|
type=str, |
|
default=None, |
|
help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.", |
|
) |
|
parser.add_argument( |
|
"--zero3_init_flag", |
|
action="store_true", |
|
help="Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models." |
|
"Only applicable with ZeRO Stage-3.", |
|
) |
|
parser.add_argument( |
|
"--zero3_save_16bit_model", |
|
action="store_true", |
|
help="Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3.", |
|
) |
|
parser.add_argument( |
|
"--fp16_master_weights_and_gradients", |
|
action="store_true", |
|
help="fp16_master_and_gradients requires optimizer to support keeping fp16 master and gradients while keeping the optimizer states in fp32.", |
|
) |
|
|
|
|
|
def prepare_deepspeed_args(args: argparse.Namespace): |
|
if not args.deepspeed: |
|
return |
|
|
|
|
|
args.max_data_loader_n_workers = 1 |
|
|
|
|
|
def prepare_deepspeed_plugin(args: argparse.Namespace): |
|
if not args.deepspeed: |
|
return None |
|
|
|
try: |
|
import deepspeed |
|
except ImportError as e: |
|
logger.error( |
|
"deepspeed is not installed. please install deepspeed in your environment with following command. DS_BUILD_OPS=0 pip install deepspeed" |
|
) |
|
exit(1) |
|
|
|
deepspeed_plugin = DeepSpeedPlugin( |
|
zero_stage=args.zero_stage, |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
gradient_clipping=args.max_grad_norm, |
|
offload_optimizer_device=args.offload_optimizer_device, |
|
offload_optimizer_nvme_path=args.offload_optimizer_nvme_path, |
|
offload_param_device=args.offload_param_device, |
|
offload_param_nvme_path=args.offload_param_nvme_path, |
|
zero3_init_flag=args.zero3_init_flag, |
|
zero3_save_16bit_model=args.zero3_save_16bit_model, |
|
) |
|
deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size |
|
deepspeed_plugin.deepspeed_config["train_batch_size"] = ( |
|
args.train_batch_size * args.gradient_accumulation_steps * int(os.environ["WORLD_SIZE"]) |
|
) |
|
deepspeed_plugin.set_mixed_precision(args.mixed_precision) |
|
if args.mixed_precision.lower() == "fp16": |
|
deepspeed_plugin.deepspeed_config["fp16"]["initial_scale_power"] = 0 |
|
if args.full_fp16 or args.fp16_master_weights_and_gradients: |
|
if args.offload_optimizer_device == "cpu" and args.zero_stage == 2: |
|
deepspeed_plugin.deepspeed_config["fp16"]["fp16_master_weights_and_grads"] = True |
|
logger.info("[DeepSpeed] full fp16 enable.") |
|
else: |
|
logger.info( |
|
"[DeepSpeed]full fp16, fp16_master_weights_and_grads currently only supported using ZeRO-Offload with DeepSpeedCPUAdam on ZeRO-2 stage." |
|
) |
|
|
|
if args.offload_optimizer_device is not None: |
|
logger.info("[DeepSpeed] start to manually build cpu_adam.") |
|
deepspeed.ops.op_builder.CPUAdamBuilder().load() |
|
logger.info("[DeepSpeed] building cpu_adam done.") |
|
|
|
return deepspeed_plugin |
|
|
|
|
|
|
|
def prepare_deepspeed_model(args: argparse.Namespace, **models): |
|
|
|
models = {k: v for k, v in models.items() if v is not None} |
|
|
|
class DeepSpeedWrapper(torch.nn.Module): |
|
def __init__(self, **kw_models) -> None: |
|
super().__init__() |
|
self.models = torch.nn.ModuleDict() |
|
|
|
for key, model in kw_models.items(): |
|
if isinstance(model, list): |
|
model = torch.nn.ModuleList(model) |
|
assert isinstance( |
|
model, torch.nn.Module |
|
), f"model must be an instance of torch.nn.Module, but got {key} is {type(model)}" |
|
self.models.update(torch.nn.ModuleDict({key: model})) |
|
|
|
def get_models(self): |
|
return self.models |
|
|
|
ds_model = DeepSpeedWrapper(**models) |
|
return ds_model |
|
|