|
import os |
|
import torch |
|
import intel_extension_for_pytorch as ipex |
|
import diffusers |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.utils import USE_PEFT_BACKEND |
|
from functools import cache |
|
|
|
|
|
|
|
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4)) |
|
|
|
@cache |
|
def find_slice_size(slice_size, slice_block_size): |
|
while (slice_size * slice_block_size) > attention_slice_rate: |
|
slice_size = slice_size // 2 |
|
if slice_size <= 1: |
|
slice_size = 1 |
|
break |
|
return slice_size |
|
|
|
@cache |
|
def find_attention_slice_sizes(query_shape, query_element_size, query_device_type, slice_size=None): |
|
if len(query_shape) == 3: |
|
batch_size_attention, query_tokens, shape_three = query_shape |
|
shape_four = 1 |
|
else: |
|
batch_size_attention, query_tokens, shape_three, shape_four = query_shape |
|
if slice_size is not None: |
|
batch_size_attention = slice_size |
|
|
|
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size |
|
block_size = batch_size_attention * slice_block_size |
|
|
|
split_slice_size = batch_size_attention |
|
split_2_slice_size = query_tokens |
|
split_3_slice_size = shape_three |
|
|
|
do_split = False |
|
do_split_2 = False |
|
do_split_3 = False |
|
|
|
if query_device_type != "xpu": |
|
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size |
|
|
|
if block_size > attention_slice_rate: |
|
do_split = True |
|
split_slice_size = find_slice_size(split_slice_size, slice_block_size) |
|
if split_slice_size * slice_block_size > attention_slice_rate: |
|
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size |
|
do_split_2 = True |
|
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) |
|
if split_2_slice_size * slice_2_block_size > attention_slice_rate: |
|
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size |
|
do_split_3 = True |
|
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) |
|
|
|
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size |
|
|
|
class SlicedAttnProcessor: |
|
r""" |
|
Processor for implementing sliced attention. |
|
|
|
Args: |
|
slice_size (`int`, *optional*): |
|
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and |
|
`attention_head_dim` must be a multiple of the `slice_size`. |
|
""" |
|
|
|
def __init__(self, slice_size): |
|
self.slice_size = slice_size |
|
|
|
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, |
|
encoder_hidden_states=None, attention_mask=None) -> torch.FloatTensor: |
|
|
|
residual = hidden_states |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = attn.head_to_batch_dim(query) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
batch_size_attention, query_tokens, shape_three = query.shape |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype |
|
) |
|
|
|
|
|
|
|
_, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_attention_slice_sizes(query.shape, query.element_size(), query.device.type, slice_size=self.slice_size) |
|
|
|
for i in range(batch_size_attention // split_slice_size): |
|
start_idx = i * split_slice_size |
|
end_idx = (i + 1) * split_slice_size |
|
if do_split_2: |
|
for i2 in range(query_tokens // split_2_slice_size): |
|
start_idx_2 = i2 * split_2_slice_size |
|
end_idx_2 = (i2 + 1) * split_2_slice_size |
|
if do_split_3: |
|
for i3 in range(shape_three // split_3_slice_size): |
|
start_idx_3 = i3 * split_3_slice_size |
|
end_idx_3 = (i3 + 1) * split_3_slice_size |
|
|
|
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] |
|
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] |
|
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
del query_slice |
|
del key_slice |
|
del attn_mask_slice |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]) |
|
|
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = attn_slice |
|
del attn_slice |
|
else: |
|
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2] |
|
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2] |
|
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
del query_slice |
|
del key_slice |
|
del attn_mask_slice |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2]) |
|
|
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice |
|
del attn_slice |
|
torch.xpu.synchronize(query.device) |
|
else: |
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
del query_slice |
|
del key_slice |
|
del attn_mask_slice |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
del attn_slice |
|
|
|
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor: |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, |
|
encoder_hidden_states=None, attention_mask=None, |
|
temb=None, scale: float = 1.0) -> torch.Tensor: |
|
|
|
residual = hidden_states |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
|
|
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2] |
|
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) |
|
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_attention_slice_sizes(query.shape, query.element_size(), query.device.type) |
|
|
|
if do_split: |
|
for i in range(batch_size_attention // split_slice_size): |
|
start_idx = i * split_slice_size |
|
end_idx = (i + 1) * split_slice_size |
|
if do_split_2: |
|
for i2 in range(query_tokens // split_2_slice_size): |
|
start_idx_2 = i2 * split_2_slice_size |
|
end_idx_2 = (i2 + 1) * split_2_slice_size |
|
if do_split_3: |
|
for i3 in range(shape_three // split_3_slice_size): |
|
start_idx_3 = i3 * split_3_slice_size |
|
end_idx_3 = (i3 + 1) * split_3_slice_size |
|
|
|
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] |
|
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] |
|
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
del query_slice |
|
del key_slice |
|
del attn_mask_slice |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]) |
|
|
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = attn_slice |
|
del attn_slice |
|
else: |
|
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2] |
|
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2] |
|
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
del query_slice |
|
del key_slice |
|
del attn_mask_slice |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2]) |
|
|
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice |
|
del attn_slice |
|
else: |
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
del query_slice |
|
del key_slice |
|
del attn_mask_slice |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
del attn_slice |
|
torch.xpu.synchronize(query.device) |
|
else: |
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
def ipex_diffusers(): |
|
|
|
diffusers.models.attention_processor.SlicedAttnProcessor = SlicedAttnProcessor |
|
diffusers.models.attention_processor.AttnProcessor = AttnProcessor |
|
|