|
|
|
|
|
import torch |
|
|
|
|
|
class HypernetworkModule(torch.nn.Module): |
|
def __init__(self, dim, multiplier=1.0): |
|
super().__init__() |
|
|
|
linear1 = torch.nn.Linear(dim, dim * 2) |
|
linear2 = torch.nn.Linear(dim * 2, dim) |
|
linear1.weight.data.normal_(mean=0.0, std=0.01) |
|
linear1.bias.data.zero_() |
|
linear2.weight.data.normal_(mean=0.0, std=0.01) |
|
linear2.bias.data.zero_() |
|
linears = [linear1, linear2] |
|
|
|
self.linear = torch.nn.Sequential(*linears) |
|
self.multiplier = multiplier |
|
|
|
def forward(self, x): |
|
return x + self.linear(x) * self.multiplier |
|
|
|
|
|
class Hypernetwork(torch.nn.Module): |
|
enable_sizes = [320, 640, 768, 1280] |
|
|
|
|
|
def __init__(self, multiplier=1.0) -> None: |
|
super().__init__() |
|
self.modules = [] |
|
for size in Hypernetwork.enable_sizes: |
|
self.modules.append((HypernetworkModule(size, multiplier), HypernetworkModule(size, multiplier))) |
|
self.register_module(f"{size}_0", self.modules[-1][0]) |
|
self.register_module(f"{size}_1", self.modules[-1][1]) |
|
|
|
def apply_to_stable_diffusion(self, text_encoder, vae, unet): |
|
blocks = unet.input_blocks + [unet.middle_block] + unet.output_blocks |
|
for block in blocks: |
|
for subblk in block: |
|
if 'SpatialTransformer' in str(type(subblk)): |
|
for tf_block in subblk.transformer_blocks: |
|
for attn in [tf_block.attn1, tf_block.attn2]: |
|
size = attn.context_dim |
|
if size in Hypernetwork.enable_sizes: |
|
attn.hypernetwork = self |
|
else: |
|
attn.hypernetwork = None |
|
|
|
def apply_to_diffusers(self, text_encoder, vae, unet): |
|
blocks = unet.down_blocks + [unet.mid_block] + unet.up_blocks |
|
for block in blocks: |
|
if hasattr(block, 'attentions'): |
|
for subblk in block.attentions: |
|
if 'SpatialTransformer' in str(type(subblk)) or 'Transformer2DModel' in str(type(subblk)): |
|
for tf_block in subblk.transformer_blocks: |
|
for attn in [tf_block.attn1, tf_block.attn2]: |
|
size = attn.to_k.in_features |
|
if size in Hypernetwork.enable_sizes: |
|
attn.hypernetwork = self |
|
else: |
|
attn.hypernetwork = None |
|
return True |
|
|
|
def forward(self, x, context): |
|
size = context.shape[-1] |
|
assert size in Hypernetwork.enable_sizes |
|
module = self.modules[Hypernetwork.enable_sizes.index(size)] |
|
return module[0].forward(context), module[1].forward(context) |
|
|
|
def load_from_state_dict(self, state_dict): |
|
|
|
changes = { |
|
'linear1.bias': 'linear.0.bias', |
|
'linear1.weight': 'linear.0.weight', |
|
'linear2.bias': 'linear.1.bias', |
|
'linear2.weight': 'linear.1.weight', |
|
} |
|
for key_from, key_to in changes.items(): |
|
if key_from in state_dict: |
|
state_dict[key_to] = state_dict[key_from] |
|
del state_dict[key_from] |
|
|
|
for size, sd in state_dict.items(): |
|
if type(size) == int: |
|
self.modules[Hypernetwork.enable_sizes.index(size)][0].load_state_dict(sd[0], strict=True) |
|
self.modules[Hypernetwork.enable_sizes.index(size)][1].load_state_dict(sd[1], strict=True) |
|
return True |
|
|
|
def get_state_dict(self): |
|
state_dict = {} |
|
for i, size in enumerate(Hypernetwork.enable_sizes): |
|
sd0 = self.modules[i][0].state_dict() |
|
sd1 = self.modules[i][1].state_dict() |
|
state_dict[size] = [sd0, sd1] |
|
return state_dict |
|
|