ACCC1380's picture
Upload lora-scripts/sd-scripts/library/sdxl_original_unet.py with huggingface_hub
b1d9e54 verified
raw
history blame
45.5 kB
# Diffusersのコードをベースとした sd_xl_baseのU-Net
# state dictの形式をSDXLに合わせてある
"""
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
"""
import math
from types import SimpleNamespace
from typing import Any, Optional
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from .utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
IN_CHANNELS: int = 4
OUT_CHANNELS: int = 4
ADM_IN_CHANNELS: int = 2816
CONTEXT_DIM: int = 2048
MODEL_CHANNELS: int = 320
TIME_EMBED_DIM = 320 * 4
USE_REENTRANT = True
# region memory efficient attention
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
"""Algorithm 2 in the paper"""
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = q.shape[-1] ** -0.5
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, "b n -> b 1 1 n")
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
q_start_index - k_start_index + 1
)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.0)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
"""Algorithm 4 in the paper"""
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
q_start_index - k_start_index + 1
)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.0)
p = exp_attn_weights / lc
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
# endregion
def get_parameter_dtype(parameter: torch.nn.Module):
return next(parameter.parameters()).dtype
def get_parameter_device(parameter: torch.nn.Module):
return next(parameter.parameters()).device
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings: flipped from Diffusers original ver because always flip_sin_to_cos=True
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
# Deep Shrink: We do not common this function, because minimize dependencies.
def resize_like(x, target, mode="bicubic", align_corners=False):
org_dtype = x.dtype
if org_dtype == torch.bfloat16:
x = x.to(torch.float32)
if x.shape[-2:] != target.shape[-2:]:
if mode == "nearest":
x = F.interpolate(x, size=target.shape[-2:], mode=mode)
else:
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners)
if org_dtype == torch.bfloat16:
x = x.to(org_dtype)
return x
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
if self.weight.dtype != torch.float32:
return super().forward(x)
return super().forward(x.float()).type(x.dtype)
class ResnetBlock2D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.in_layers = nn.Sequential(
GroupNorm32(32, in_channels),
nn.SiLU(),
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
)
self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels))
self.out_layers = nn.Sequential(
GroupNorm32(32, out_channels),
nn.SiLU(),
nn.Identity(), # to make state_dict compatible with original model
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
)
if in_channels != out_channels:
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
self.skip_connection = nn.Identity()
self.gradient_checkpointing = False
def forward_body(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
h = h + emb_out[:, :, None, None]
h = self.out_layers(h)
x = self.skip_connection(x)
return x + h
def forward(self, x, emb):
if self.training and self.gradient_checkpointing:
# logger.info("ResnetBlock2D: gradient_checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb, use_reentrant=USE_REENTRANT)
else:
x = self.forward_body(x, emb)
return x
class Downsample2D(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)
self.gradient_checkpointing = False
def forward_body(self, hidden_states):
assert hidden_states.shape[1] == self.channels
hidden_states = self.op(hidden_states)
return hidden_states
def forward(self, hidden_states):
if self.training and self.gradient_checkpointing:
# logger.info("Downsample2D: gradient_checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.forward_body), hidden_states, use_reentrant=USE_REENTRANT
)
else:
hidden_states = self.forward_body(hidden_states)
return hidden_states
class CrossAttention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
upcast_attention: bool = False,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
# no dropout here
self.use_memory_efficient_attention_xformers = False
self.use_memory_efficient_attention_mem_eff = False
self.use_sdpa = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
self.use_memory_efficient_attention_xformers = xformers
self.use_memory_efficient_attention_mem_eff = mem_eff
def set_use_sdpa(self, sdpa):
self.use_sdpa = sdpa
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def forward(self, hidden_states, context=None, mask=None):
if self.use_memory_efficient_attention_xformers:
return self.forward_memory_efficient_xformers(hidden_states, context, mask)
if self.use_memory_efficient_attention_mem_eff:
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
if self.use_sdpa:
return self.forward_sdpa(hidden_states, context, mask)
query = self.to_q(hidden_states)
context = context if context is not None else hidden_states
key = self.to_k(context)
value = self.to_v(context)
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
hidden_states = self._attention(query, key, value)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# hidden_states = self.to_out[1](hidden_states) # no dropout
return hidden_states
def _attention(self, query, key, value):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
# TODO support Hypernetworks
def forward_memory_efficient_xformers(self, x, context=None, mask=None):
import xformers.ops
h = self.heads
q_in = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
del q, k, v
out = rearrange(out, "b n h d -> b n (h d)", h=h)
out = self.to_out[0](out)
return out
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
flash_func = FlashAttentionFunction
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k = self.to_k(context)
v = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out[0](out)
return out
def forward_sdpa(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = rearrange(out, "b h n d -> b n (h d)", h=h)
out = self.to_out[0](out)
return out
# feedforward
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
):
super().__init__()
inner_dim = int(dim * 4) # mult is always 4
self.net = nn.ModuleList([])
# project in
self.net.append(GEGLU(dim, inner_dim))
# project dropout
self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0
# project out
self.net.append(nn.Linear(inner_dim, dim))
def forward(self, hidden_states):
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class BasicTransformerBlock(nn.Module):
def __init__(
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
):
super().__init__()
self.gradient_checkpointing = False
# 1. Self-Attn
self.attn1 = CrossAttention(
query_dim=dim,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
upcast_attention=upcast_attention,
)
self.ff = FeedForward(dim)
# 2. Cross-Attn
self.attn2 = CrossAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
upcast_attention=upcast_attention,
)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa: bool):
self.attn1.set_use_sdpa(sdpa)
self.attn2.set_use_sdpa(sdpa)
def forward_body(self, hidden_states, context=None, timestep=None):
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states)
hidden_states = self.attn1(norm_hidden_states) + hidden_states
# 2. Cross-Attention
norm_hidden_states = self.norm2(hidden_states)
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
def forward(self, hidden_states, context=None, timestep=None):
if self.training and self.gradient_checkpointing:
# logger.info("BasicTransformerBlock: checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
output = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.forward_body), hidden_states, context, timestep, use_reentrant=USE_REENTRANT
)
else:
output = self.forward_body(hidden_states, context, timestep)
return output
class Transformer2DModel(nn.Module):
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
use_linear_projection: bool = False,
upcast_attention: bool = False,
num_transformer_layers: int = 1,
):
super().__init__()
self.in_channels = in_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.use_linear_projection = use_linear_projection
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
# self.norm = GroupNorm32(32, in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
blocks = []
for _ in range(num_transformer_layers):
blocks.append(
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
cross_attention_dim=cross_attention_dim,
upcast_attention=upcast_attention,
)
)
self.transformer_blocks = nn.ModuleList(blocks)
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
for transformer in self.transformer_blocks:
transformer.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa):
for transformer in self.transformer_blocks:
transformer.set_use_sdpa(sdpa)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None):
# 1. Input
batch, _, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
# 3. Output
if not self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
return output
class Upsample2D(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward_body(self, hidden_states, output_size=None):
assert hidden_states.shape[1] == self.channels
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
hidden_states = self.conv(hidden_states)
return hidden_states
def forward(self, hidden_states, output_size=None):
if self.training and self.gradient_checkpointing:
# logger.info("Upsample2D: gradient_checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.forward_body), hidden_states, output_size, use_reentrant=USE_REENTRANT
)
else:
hidden_states = self.forward_body(hidden_states, output_size)
return hidden_states
class SdxlUNet2DConditionModel(nn.Module):
_supports_gradient_checkpointing = True
def __init__(
self,
**kwargs,
):
super().__init__()
self.in_channels = IN_CHANNELS
self.out_channels = OUT_CHANNELS
self.model_channels = MODEL_CHANNELS
self.time_embed_dim = TIME_EMBED_DIM
self.adm_in_channels = ADM_IN_CHANNELS
self.gradient_checkpointing = False
# self.sample_size = sample_size
# time embedding
self.time_embed = nn.Sequential(
nn.Linear(self.model_channels, self.time_embed_dim),
nn.SiLU(),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
# label embedding
self.label_emb = nn.Sequential(
nn.Sequential(
nn.Linear(self.adm_in_channels, self.time_embed_dim),
nn.SiLU(),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
)
# input
self.input_blocks = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)),
)
]
)
# level 0
for i in range(2):
layers = [
ResnetBlock2D(
in_channels=1 * self.model_channels,
out_channels=1 * self.model_channels,
),
]
self.input_blocks.append(nn.ModuleList(layers))
self.input_blocks.append(
nn.Sequential(
Downsample2D(
channels=1 * self.model_channels,
out_channels=1 * self.model_channels,
),
)
)
# level 1
for i in range(2):
layers = [
ResnetBlock2D(
in_channels=(1 if i == 0 else 2) * self.model_channels,
out_channels=2 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=2 * self.model_channels // 64,
attention_head_dim=64,
in_channels=2 * self.model_channels,
num_transformer_layers=2,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
self.input_blocks.append(nn.ModuleList(layers))
self.input_blocks.append(
nn.Sequential(
Downsample2D(
channels=2 * self.model_channels,
out_channels=2 * self.model_channels,
),
)
)
# level 2
for i in range(2):
layers = [
ResnetBlock2D(
in_channels=(2 if i == 0 else 4) * self.model_channels,
out_channels=4 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=4 * self.model_channels // 64,
attention_head_dim=64,
in_channels=4 * self.model_channels,
num_transformer_layers=10,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
self.input_blocks.append(nn.ModuleList(layers))
# mid
self.middle_block = nn.ModuleList(
[
ResnetBlock2D(
in_channels=4 * self.model_channels,
out_channels=4 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=4 * self.model_channels // 64,
attention_head_dim=64,
in_channels=4 * self.model_channels,
num_transformer_layers=10,
use_linear_projection=True,
cross_attention_dim=2048,
),
ResnetBlock2D(
in_channels=4 * self.model_channels,
out_channels=4 * self.model_channels,
),
]
)
# output
self.output_blocks = nn.ModuleList([])
# level 2
for i in range(3):
layers = [
ResnetBlock2D(
in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels,
out_channels=4 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=4 * self.model_channels // 64,
attention_head_dim=64,
in_channels=4 * self.model_channels,
num_transformer_layers=10,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
if i == 2:
layers.append(
Upsample2D(
channels=4 * self.model_channels,
out_channels=4 * self.model_channels,
)
)
self.output_blocks.append(nn.ModuleList(layers))
# level 1
for i in range(3):
layers = [
ResnetBlock2D(
in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels,
out_channels=2 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=2 * self.model_channels // 64,
attention_head_dim=64,
in_channels=2 * self.model_channels,
num_transformer_layers=2,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
if i == 2:
layers.append(
Upsample2D(
channels=2 * self.model_channels,
out_channels=2 * self.model_channels,
)
)
self.output_blocks.append(nn.ModuleList(layers))
# level 0
for i in range(3):
layers = [
ResnetBlock2D(
in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels,
out_channels=1 * self.model_channels,
),
]
self.output_blocks.append(nn.ModuleList(layers))
# output
self.out = nn.ModuleList(
[GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)]
)
# region diffusers compatibility
def prepare_config(self):
self.config = SimpleNamespace()
@property
def dtype(self) -> torch.dtype:
# `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
return get_parameter_dtype(self)
@property
def device(self) -> torch.device:
# `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
return get_parameter_device(self)
def set_attention_slice(self, slice_size):
raise NotImplementedError("Attention slicing is not supported for this model.")
def is_gradient_checkpointing(self) -> bool:
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
self.set_gradient_checkpointing(value=True)
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
self.set_gradient_checkpointing(value=False)
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
for block in blocks:
for module in block:
if hasattr(module, "set_use_memory_efficient_attention"):
# logger.info(module.__class__.__name__)
module.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa: bool) -> None:
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
for block in blocks:
for module in block:
if hasattr(module, "set_use_sdpa"):
module.set_use_sdpa(sdpa)
def set_gradient_checkpointing(self, value=False):
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
for block in blocks:
for module in block.modules():
if hasattr(module, "gradient_checkpointing"):
# logger.info(f{module.__class__.__name__} {module.gradient_checkpointing} -> {value}")
module.gradient_checkpointing = value
# endregion
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
hs = []
t_emb = get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0) # , repeat_only=False)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
# assert x.dtype == self.dtype
emb = emb + self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
# logger.info(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
if isinstance(layer, ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
# h = x.type(self.dtype)
h = x
for module in self.input_blocks:
h = call_module(module, h, emb, context)
hs.append(h)
h = call_module(self.middle_block, h, emb, context)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = call_module(module, h, emb, context)
h = h.type(x.dtype)
h = call_module(self.out, h, emb, context)
return h
class InferSdxlUNet2DConditionModel:
def __init__(self, original_unet: SdxlUNet2DConditionModel, **kwargs):
self.delegate = original_unet
# override original model's forward method: because forward is not called by `__call__`
# overriding `__call__` is not enough, because nn.Module.forward has a special handling
self.delegate.forward = self.forward
# Deep Shrink
self.ds_depth_1 = None
self.ds_depth_2 = None
self.ds_timesteps_1 = None
self.ds_timesteps_2 = None
self.ds_ratio = None
# call original model's methods
def __getattr__(self, name):
return getattr(self.delegate, name)
def __call__(self, *args, **kwargs):
return self.delegate(*args, **kwargs)
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5):
if ds_depth_1 is None:
logger.info("Deep Shrink is disabled.")
self.ds_depth_1 = None
self.ds_timesteps_1 = None
self.ds_depth_2 = None
self.ds_timesteps_2 = None
self.ds_ratio = None
else:
logger.info(
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]"
)
self.ds_depth_1 = ds_depth_1
self.ds_timesteps_1 = ds_timesteps_1
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000
self.ds_ratio = ds_ratio
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
r"""
current implementation is a copy of `SdxlUNet2DConditionModel.forward()` with Deep Shrink.
"""
_self = self.delegate
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
hs = []
t_emb = get_timestep_embedding(timesteps, _self.model_channels, downscale_freq_shift=0) # , repeat_only=False)
t_emb = t_emb.to(x.dtype)
emb = _self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
# assert x.dtype == _self.dtype
emb = emb + _self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
# print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
if isinstance(layer, ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
# h = x.type(self.dtype)
h = x
for depth, module in enumerate(_self.input_blocks):
# Deep Shrink
if self.ds_depth_1 is not None:
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or (
self.ds_depth_2 is not None
and depth == self.ds_depth_2
and timesteps[0] < self.ds_timesteps_1
and timesteps[0] >= self.ds_timesteps_2
):
# print("downsample", h.shape, self.ds_ratio)
org_dtype = h.dtype
if org_dtype == torch.bfloat16:
h = h.to(torch.float32)
h = F.interpolate(h, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype)
h = call_module(module, h, emb, context)
hs.append(h)
h = call_module(_self.middle_block, h, emb, context)
for module in _self.output_blocks:
# Deep Shrink
if self.ds_depth_1 is not None:
if hs[-1].shape[-2:] != h.shape[-2:]:
# print("upsample", h.shape, hs[-1].shape)
h = resize_like(h, hs[-1])
h = torch.cat([h, hs.pop()], dim=1)
h = call_module(module, h, emb, context)
# Deep Shrink: in case of depth 0
if self.ds_depth_1 == 0 and h.shape[-2:] != x.shape[-2:]:
# print("upsample", h.shape, x.shape)
h = resize_like(h, x)
h = h.type(x.dtype)
h = call_module(_self.out, h, emb, context)
return h
if __name__ == "__main__":
import time
logger.info("create unet")
unet = SdxlUNet2DConditionModel()
unet.to("cuda")
unet.set_use_memory_efficient_attention(True, False)
unet.set_gradient_checkpointing(True)
unet.train()
# 使用メモリ量確認用の疑似学習ループ
logger.info("preparing optimizer")
# optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working
# import bitsandbytes
# optimizer = bitsandbytes.adam.Adam8bit(unet.parameters(), lr=1e-3) # not working
# optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
# optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
import transformers
optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2
scaler = torch.cuda.amp.GradScaler(enabled=True)
logger.info("start training")
steps = 10
batch_size = 1
for step in range(steps):
logger.info(f"step {step}")
if step == 1:
time_start = time.perf_counter()
x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024
t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda")
ctx = torch.randn(batch_size, 77, 2048).cuda()
y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda()
with torch.cuda.amp.autocast(enabled=True):
output = unet(x, t, ctx, y)
target = torch.randn_like(output)
loss = torch.nn.functional.mse_loss(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
time_end = time.perf_counter()
logger.info(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")