|
|
|
|
|
import argparse |
|
import math |
|
from multiprocessing import Value |
|
import os |
|
|
|
from accelerate.utils import set_seed |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from library import config_util |
|
from library import train_util |
|
from library import sdxl_train_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
from library.utils import setup_logging |
|
setup_logging() |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
def cache_to_disk(args: argparse.Namespace) -> None: |
|
train_util.prepare_dataset_args(args, True) |
|
|
|
|
|
assert ( |
|
args.cache_text_encoder_outputs_to_disk |
|
), "cache_text_encoder_outputs_to_disk must be True / cache_text_encoder_outputs_to_diskはTrueである必要があります" |
|
|
|
|
|
assert ( |
|
args.sdxl |
|
), "cache_text_encoder_outputs_to_disk is only available for SDXL / cache_text_encoder_outputs_to_diskはSDXLのみ利用可能です" |
|
|
|
use_dreambooth_method = args.in_json is None |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if args.sdxl: |
|
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args) |
|
tokenizers = [tokenizer1, tokenizer2] |
|
else: |
|
tokenizer = train_util.load_tokenizer(args) |
|
tokenizers = [tokenizer] |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True)) |
|
if args.dataset_config is not None: |
|
logger.info(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
logger.warning( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
if use_dreambooth_method: |
|
logger.info("Using DreamBooth method.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( |
|
args.train_data_dir, args.reg_data_dir |
|
) |
|
} |
|
] |
|
} |
|
else: |
|
logger.info("Training with captions.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizers) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizers) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
|
|
logger.info("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, _ = train_util.prepare_dtype(args) |
|
|
|
|
|
logger.info("load model") |
|
if args.sdxl: |
|
(_, text_encoder1, text_encoder2, _, _, _, _) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype) |
|
text_encoders = [text_encoder1, text_encoder2] |
|
else: |
|
text_encoder1, _, _, _ = train_util.load_target_model(args, weight_dtype, accelerator) |
|
text_encoders = [text_encoder1] |
|
|
|
for text_encoder in text_encoders: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.requires_grad_(False) |
|
text_encoder.eval() |
|
|
|
|
|
train_dataset_group.set_caching_mode("text") |
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
train_dataloader = accelerator.prepare(train_dataloader) |
|
|
|
|
|
for batch in tqdm(train_dataloader): |
|
absolute_paths = batch["absolute_paths"] |
|
input_ids1_list = batch["input_ids1_list"] |
|
input_ids2_list = batch["input_ids2_list"] |
|
|
|
image_infos = [] |
|
for absolute_path, input_ids1, input_ids2 in zip(absolute_paths, input_ids1_list, input_ids2_list): |
|
image_info = train_util.ImageInfo(absolute_path, 1, "dummy", False, absolute_path) |
|
image_info.text_encoder_outputs_npz = os.path.splitext(absolute_path)[0] + train_util.TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX |
|
image_info |
|
|
|
if args.skip_existing: |
|
if os.path.exists(image_info.text_encoder_outputs_npz): |
|
logger.warning(f"Skipping {image_info.text_encoder_outputs_npz} because it already exists.") |
|
continue |
|
|
|
image_info.input_ids1 = input_ids1 |
|
image_info.input_ids2 = input_ids2 |
|
image_infos.append(image_info) |
|
|
|
if len(image_infos) > 0: |
|
b_input_ids1 = torch.stack([image_info.input_ids1 for image_info in image_infos]) |
|
b_input_ids2 = torch.stack([image_info.input_ids2 for image_info in image_infos]) |
|
train_util.cache_batch_text_encoder_outputs( |
|
image_infos, tokenizers, text_encoders, args.max_token_length, True, b_input_ids1, b_input_ids2, weight_dtype |
|
) |
|
|
|
accelerator.wait_for_everyone() |
|
accelerator.print(f"Finished caching latents for {len(train_dataset_group)} batches.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_training_arguments(parser, True) |
|
train_util.add_dataset_arguments(parser, True, True, True) |
|
config_util.add_config_arguments(parser) |
|
sdxl_train_util.add_sdxl_training_arguments(parser) |
|
parser.add_argument("--sdxl", action="store_true", help="Use SDXL model / SDXLモデルを使用する") |
|
parser.add_argument( |
|
"--skip_existing", |
|
action="store_true", |
|
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)", |
|
) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
cache_to_disk(args) |
|
|