|
|
|
|
|
|
|
import argparse |
|
import math |
|
import os |
|
from multiprocessing import Value |
|
import toml |
|
|
|
from tqdm import tqdm |
|
|
|
import torch |
|
from library import deepspeed_utils |
|
from library.device_utils import init_ipex, clean_memory_on_device |
|
|
|
init_ipex() |
|
|
|
from accelerate.utils import set_seed |
|
from diffusers import DDPMScheduler |
|
|
|
from library.utils import setup_logging, add_logging_arguments |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import library.train_util as train_util |
|
import library.config_util as config_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
import library.custom_train_functions as custom_train_functions |
|
from library.custom_train_functions import ( |
|
apply_snr_weight, |
|
get_weighted_text_embeddings, |
|
prepare_scheduler_for_custom_training, |
|
scale_v_prediction_loss_like_noise_prediction, |
|
apply_debiased_estimation, |
|
) |
|
|
|
|
|
def train(args): |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
deepspeed_utils.prepare_deepspeed_args(args) |
|
setup_logging(args, reset=True) |
|
|
|
cache_latents = args.cache_latents |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
tokenizer = train_util.load_tokenizer(args) |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, False, True)) |
|
if args.dataset_config is not None: |
|
logger.info(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
logger.warning( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group) |
|
return |
|
if len(train_dataset_group) == 0: |
|
logger.error( |
|
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。" |
|
) |
|
return |
|
|
|
if cache_latents: |
|
assert ( |
|
train_dataset_group.is_latent_cacheable() |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
|
|
logger.info("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype |
|
|
|
|
|
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator) |
|
|
|
|
|
if load_stable_diffusion_format: |
|
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path |
|
src_diffusers_model_path = None |
|
else: |
|
src_stable_diffusion_ckpt = None |
|
src_diffusers_model_path = args.pretrained_model_name_or_path |
|
|
|
if args.save_model_as is None: |
|
save_stable_diffusion_format = load_stable_diffusion_format |
|
use_safetensors = args.use_safetensors |
|
else: |
|
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors" |
|
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower()) |
|
|
|
|
|
def set_diffusers_xformers_flag(model, valid): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"): |
|
module.set_use_memory_efficient_attention_xformers(valid) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
fn_recursive_set_mem_eff(model) |
|
|
|
|
|
if args.diffusers_xformers: |
|
accelerator.print("Use xformers by Diffusers") |
|
set_diffusers_xformers_flag(unet, True) |
|
else: |
|
|
|
accelerator.print("Disable Diffusers' xformers") |
|
set_diffusers_xformers_flag(unet, False) |
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) |
|
vae.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
training_models = [] |
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
training_models.append(unet) |
|
|
|
if args.train_text_encoder: |
|
accelerator.print("enable text encoder training") |
|
if args.gradient_checkpointing: |
|
text_encoder.gradient_checkpointing_enable() |
|
training_models.append(text_encoder) |
|
else: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.requires_grad_(False) |
|
if args.gradient_checkpointing: |
|
text_encoder.gradient_checkpointing_enable() |
|
text_encoder.train() |
|
else: |
|
text_encoder.eval() |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
|
|
for m in training_models: |
|
m.requires_grad_(True) |
|
|
|
trainable_params = [] |
|
if args.learning_rate_te is None or not args.train_text_encoder: |
|
for m in training_models: |
|
trainable_params.extend(m.parameters()) |
|
else: |
|
trainable_params = [ |
|
{"params": list(unet.parameters()), "lr": args.learning_rate}, |
|
{"params": list(text_encoder.parameters()), "lr": args.learning_rate_te}, |
|
] |
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.") |
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params=trainable_params) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil( |
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps |
|
) |
|
accelerator.print( |
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" |
|
) |
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps) |
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) |
|
|
|
|
|
if args.full_fp16: |
|
assert ( |
|
args.mixed_precision == "fp16" |
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" |
|
accelerator.print("enable full fp16 training.") |
|
unet.to(weight_dtype) |
|
text_encoder.to(weight_dtype) |
|
|
|
if args.deepspeed: |
|
if args.train_text_encoder: |
|
ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet, text_encoder=text_encoder) |
|
else: |
|
ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet) |
|
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
ds_model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
training_models = [ds_model] |
|
else: |
|
|
|
if args.train_text_encoder: |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler |
|
) |
|
else: |
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) |
|
|
|
|
|
if args.full_fp16: |
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
accelerator.print("running training / 学習開始") |
|
accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}") |
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") |
|
accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}") |
|
accelerator.print( |
|
f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" |
|
) |
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False |
|
) |
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) |
|
if args.zero_terminal_snr: |
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) |
|
|
|
if accelerator.is_main_process: |
|
init_kwargs = {} |
|
if args.wandb_run_name: |
|
init_kwargs["wandb"] = {"name": args.wandb_run_name} |
|
if args.log_tracker_config is not None: |
|
init_kwargs = toml.load(args.log_tracker_config) |
|
accelerator.init_trackers("finetuning" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs) |
|
|
|
|
|
train_util.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
loss_recorder = train_util.LossRecorder() |
|
for epoch in range(num_train_epochs): |
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") |
|
current_epoch.value = epoch + 1 |
|
|
|
for m in training_models: |
|
m.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
current_step.value = global_step |
|
with accelerator.accumulate(*training_models): |
|
with torch.no_grad(): |
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) |
|
else: |
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(weight_dtype) |
|
latents = latents * 0.18215 |
|
b_size = latents.shape[0] |
|
|
|
with torch.set_grad_enabled(args.train_text_encoder): |
|
|
|
if args.weighted_captions: |
|
encoder_hidden_states = get_weighted_text_embeddings( |
|
tokenizer, |
|
text_encoder, |
|
batch["captions"], |
|
accelerator.device, |
|
args.max_token_length // 75 if args.max_token_length else 1, |
|
clip_skip=args.clip_skip, |
|
) |
|
else: |
|
input_ids = batch["input_ids"].to(accelerator.device) |
|
encoder_hidden_states = train_util.get_hidden_states( |
|
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype |
|
) |
|
|
|
|
|
|
|
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents) |
|
|
|
|
|
with accelerator.autocast(): |
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
if args.min_snr_gamma or args.scale_v_pred_loss_like_noise_pred or args.debiased_estimation_loss: |
|
|
|
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c) |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
if args.min_snr_gamma: |
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) |
|
if args.scale_v_pred_loss_like_noise_pred: |
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) |
|
if args.debiased_estimation_loss: |
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler) |
|
|
|
loss = loss.mean() |
|
else: |
|
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c) |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
params_to_clip = [] |
|
for m in training_models: |
|
params_to_clip.extend(m.parameters()) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
train_util.sample_images( |
|
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet |
|
) |
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
train_util.save_sd_model_on_epoch_end_or_stepwise( |
|
args, |
|
False, |
|
accelerator, |
|
src_path, |
|
save_stable_diffusion_format, |
|
use_safetensors, |
|
save_dtype, |
|
epoch, |
|
num_train_epochs, |
|
global_step, |
|
accelerator.unwrap_model(text_encoder), |
|
accelerator.unwrap_model(unet), |
|
vae, |
|
) |
|
|
|
current_loss = loss.detach().item() |
|
if args.logging_dir is not None: |
|
logs = {"loss": current_loss} |
|
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True) |
|
accelerator.log(logs, step=global_step) |
|
|
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss) |
|
avr_loss: float = loss_recorder.moving_average |
|
logs = {"avr_loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_recorder.moving_average} |
|
accelerator.log(logs, step=epoch + 1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
if args.save_every_n_epochs is not None: |
|
if accelerator.is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
train_util.save_sd_model_on_epoch_end_or_stepwise( |
|
args, |
|
True, |
|
accelerator, |
|
src_path, |
|
save_stable_diffusion_format, |
|
use_safetensors, |
|
save_dtype, |
|
epoch, |
|
num_train_epochs, |
|
global_step, |
|
accelerator.unwrap_model(text_encoder), |
|
accelerator.unwrap_model(unet), |
|
vae, |
|
) |
|
|
|
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
is_main_process = accelerator.is_main_process |
|
if is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
text_encoder = accelerator.unwrap_model(text_encoder) |
|
|
|
accelerator.end_training() |
|
|
|
if is_main_process and (args.save_state or args.save_state_on_train_end): |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
del accelerator |
|
|
|
if is_main_process: |
|
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path |
|
train_util.save_sd_model_on_train_end( |
|
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae |
|
) |
|
logger.info("model saved.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
add_logging_arguments(parser) |
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, False, True, True) |
|
train_util.add_training_arguments(parser, False) |
|
deepspeed_utils.add_deepspeed_arguments(parser) |
|
train_util.add_sd_saving_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
custom_train_functions.add_custom_train_arguments(parser) |
|
|
|
parser.add_argument( |
|
"--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する" |
|
) |
|
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する") |
|
parser.add_argument( |
|
"--learning_rate_te", |
|
type=float, |
|
default=None, |
|
help="learning rate for text encoder, default is same as unet / Text Encoderの学習率、デフォルトはunetと同じ", |
|
) |
|
parser.add_argument( |
|
"--no_half_vae", |
|
action="store_true", |
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", |
|
) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
train(args) |
|
|