|
import logging |
|
import sys |
|
import threading |
|
import torch |
|
from torchvision import transforms |
|
from typing import * |
|
from diffusers import EulerAncestralDiscreteScheduler |
|
import diffusers.schedulers.scheduling_euler_ancestral_discrete |
|
from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteSchedulerOutput |
|
|
|
|
|
def fire_in_thread(f, *args, **kwargs): |
|
threading.Thread(target=f, args=args, kwargs=kwargs).start() |
|
|
|
|
|
def add_logging_arguments(parser): |
|
parser.add_argument( |
|
"--console_log_level", |
|
type=str, |
|
default=None, |
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], |
|
help="Set the logging level, default is INFO / ログレベルを設定する。デフォルトはINFO", |
|
) |
|
parser.add_argument( |
|
"--console_log_file", |
|
type=str, |
|
default=None, |
|
help="Log to a file instead of stderr / 標準エラー出力ではなくファイルにログを出力する", |
|
) |
|
parser.add_argument("--console_log_simple", action="store_true", help="Simple log output / シンプルなログ出力") |
|
|
|
|
|
def setup_logging(args=None, log_level=None, reset=False): |
|
if logging.root.handlers: |
|
if reset: |
|
|
|
for handler in logging.root.handlers[:]: |
|
logging.root.removeHandler(handler) |
|
else: |
|
return |
|
|
|
|
|
if log_level is None and args is not None: |
|
log_level = args.console_log_level |
|
if log_level is None: |
|
log_level = "INFO" |
|
log_level = getattr(logging, log_level) |
|
|
|
msg_init = None |
|
if args is not None and args.console_log_file: |
|
handler = logging.FileHandler(args.console_log_file, mode="w") |
|
else: |
|
handler = None |
|
if not args or not args.console_log_simple: |
|
try: |
|
from rich.logging import RichHandler |
|
from rich.console import Console |
|
from rich.logging import RichHandler |
|
|
|
handler = RichHandler(console=Console(stderr=True)) |
|
except ImportError: |
|
|
|
msg_init = "rich is not installed, using basic logging" |
|
|
|
if handler is None: |
|
handler = logging.StreamHandler(sys.stdout) |
|
handler.propagate = False |
|
|
|
formatter = logging.Formatter( |
|
fmt="%(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
) |
|
handler.setFormatter(formatter) |
|
logging.root.setLevel(log_level) |
|
logging.root.addHandler(handler) |
|
|
|
if msg_init is not None: |
|
logger = logging.getLogger(__name__) |
|
logger.info(msg_init) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradualLatent: |
|
def __init__( |
|
self, |
|
ratio, |
|
start_timesteps, |
|
every_n_steps, |
|
ratio_step, |
|
s_noise=1.0, |
|
gaussian_blur_ksize=None, |
|
gaussian_blur_sigma=0.5, |
|
gaussian_blur_strength=0.5, |
|
unsharp_target_x=True, |
|
): |
|
self.ratio = ratio |
|
self.start_timesteps = start_timesteps |
|
self.every_n_steps = every_n_steps |
|
self.ratio_step = ratio_step |
|
self.s_noise = s_noise |
|
self.gaussian_blur_ksize = gaussian_blur_ksize |
|
self.gaussian_blur_sigma = gaussian_blur_sigma |
|
self.gaussian_blur_strength = gaussian_blur_strength |
|
self.unsharp_target_x = unsharp_target_x |
|
|
|
def __str__(self) -> str: |
|
return ( |
|
f"GradualLatent(ratio={self.ratio}, start_timesteps={self.start_timesteps}, " |
|
+ f"every_n_steps={self.every_n_steps}, ratio_step={self.ratio_step}, s_noise={self.s_noise}, " |
|
+ f"gaussian_blur_ksize={self.gaussian_blur_ksize}, gaussian_blur_sigma={self.gaussian_blur_sigma}, gaussian_blur_strength={self.gaussian_blur_strength}, " |
|
+ f"unsharp_target_x={self.unsharp_target_x})" |
|
) |
|
|
|
def apply_unshark_mask(self, x: torch.Tensor): |
|
if self.gaussian_blur_ksize is None: |
|
return x |
|
blurred = transforms.functional.gaussian_blur(x, self.gaussian_blur_ksize, self.gaussian_blur_sigma) |
|
|
|
mask = (x - blurred) * self.gaussian_blur_strength |
|
sharpened = x + mask |
|
return sharpened |
|
|
|
def interpolate(self, x: torch.Tensor, resized_size, unsharp=True): |
|
org_dtype = x.dtype |
|
if org_dtype == torch.bfloat16: |
|
x = x.float() |
|
|
|
x = torch.nn.functional.interpolate(x, size=resized_size, mode="bicubic", align_corners=False).to(dtype=org_dtype) |
|
|
|
|
|
if unsharp and self.gaussian_blur_ksize: |
|
x = self.apply_unshark_mask(x) |
|
|
|
return x |
|
|
|
|
|
class EulerAncestralDiscreteSchedulerGL(EulerAncestralDiscreteScheduler): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.resized_size = None |
|
self.gradual_latent = None |
|
|
|
def set_gradual_latent_params(self, size, gradual_latent: GradualLatent): |
|
self.resized_size = size |
|
self.gradual_latent = gradual_latent |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
|
|
print( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
elif self.config.prediction_type == "sample": |
|
raise NotImplementedError("prediction_type not implemented yet: sample") |
|
else: |
|
raise ValueError(f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") |
|
|
|
sigma_from = self.sigmas[self.step_index] |
|
sigma_to = self.sigmas[self.step_index + 1] |
|
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 |
|
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma |
|
|
|
dt = sigma_down - sigma |
|
|
|
device = model_output.device |
|
if self.resized_size is None: |
|
prev_sample = sample + derivative * dt |
|
|
|
noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor( |
|
model_output.shape, dtype=model_output.dtype, device=device, generator=generator |
|
) |
|
s_noise = 1.0 |
|
else: |
|
print("resized_size", self.resized_size, "model_output.shape", model_output.shape, "sample.shape", sample.shape) |
|
s_noise = self.gradual_latent.s_noise |
|
|
|
if self.gradual_latent.unsharp_target_x: |
|
prev_sample = sample + derivative * dt |
|
prev_sample = self.gradual_latent.interpolate(prev_sample, self.resized_size) |
|
else: |
|
sample = self.gradual_latent.interpolate(sample, self.resized_size) |
|
derivative = self.gradual_latent.interpolate(derivative, self.resized_size, unsharp=False) |
|
prev_sample = sample + derivative * dt |
|
|
|
noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor( |
|
(model_output.shape[0], model_output.shape[1], self.resized_size[0], self.resized_size[1]), |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
|
|
prev_sample = prev_sample + noise * sigma_up * s_noise |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerAncestralDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
|
|
|
|
|