Upload lora-scripts/sd-scripts/networks/lora_diffusers.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/lora_diffusers.py
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Diffusersで動くLoRA。このファイル単独で完結する。
|
2 |
+
# LoRA module for Diffusers. This file works independently.
|
3 |
+
|
4 |
+
import bisect
|
5 |
+
import math
|
6 |
+
import random
|
7 |
+
from typing import Any, Dict, List, Mapping, Optional, Union
|
8 |
+
from diffusers import UNet2DConditionModel
|
9 |
+
import numpy as np
|
10 |
+
from tqdm import tqdm
|
11 |
+
from transformers import CLIPTextModel
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from library.device_utils import init_ipex, get_preferred_device
|
15 |
+
init_ipex()
|
16 |
+
|
17 |
+
from library.utils import setup_logging
|
18 |
+
setup_logging()
|
19 |
+
import logging
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
def make_unet_conversion_map() -> Dict[str, str]:
|
23 |
+
unet_conversion_map_layer = []
|
24 |
+
|
25 |
+
for i in range(3): # num_blocks is 3 in sdxl
|
26 |
+
# loop over downblocks/upblocks
|
27 |
+
for j in range(2):
|
28 |
+
# loop over resnets/attentions for downblocks
|
29 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
30 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
31 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
32 |
+
|
33 |
+
if i < 3:
|
34 |
+
# no attention layers in down_blocks.3
|
35 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
36 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
37 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
38 |
+
|
39 |
+
for j in range(3):
|
40 |
+
# loop over resnets/attentions for upblocks
|
41 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
42 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
43 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
44 |
+
|
45 |
+
# if i > 0: commentout for sdxl
|
46 |
+
# no attention layers in up_blocks.0
|
47 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
48 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
49 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
50 |
+
|
51 |
+
if i < 3:
|
52 |
+
# no downsample in down_blocks.3
|
53 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
54 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
55 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
56 |
+
|
57 |
+
# no upsample in up_blocks.3
|
58 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
59 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
60 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
61 |
+
|
62 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
63 |
+
sd_mid_atn_prefix = "middle_block.1."
|
64 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
65 |
+
|
66 |
+
for j in range(2):
|
67 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
68 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
69 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
70 |
+
|
71 |
+
unet_conversion_map_resnet = [
|
72 |
+
# (stable-diffusion, HF Diffusers)
|
73 |
+
("in_layers.0.", "norm1."),
|
74 |
+
("in_layers.2.", "conv1."),
|
75 |
+
("out_layers.0.", "norm2."),
|
76 |
+
("out_layers.3.", "conv2."),
|
77 |
+
("emb_layers.1.", "time_emb_proj."),
|
78 |
+
("skip_connection.", "conv_shortcut."),
|
79 |
+
]
|
80 |
+
|
81 |
+
unet_conversion_map = []
|
82 |
+
for sd, hf in unet_conversion_map_layer:
|
83 |
+
if "resnets" in hf:
|
84 |
+
for sd_res, hf_res in unet_conversion_map_resnet:
|
85 |
+
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
86 |
+
else:
|
87 |
+
unet_conversion_map.append((sd, hf))
|
88 |
+
|
89 |
+
for j in range(2):
|
90 |
+
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
91 |
+
sd_time_embed_prefix = f"time_embed.{j*2}."
|
92 |
+
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
93 |
+
|
94 |
+
for j in range(2):
|
95 |
+
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
96 |
+
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
97 |
+
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
98 |
+
|
99 |
+
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
100 |
+
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
101 |
+
unet_conversion_map.append(("out.2.", "conv_out."))
|
102 |
+
|
103 |
+
sd_hf_conversion_map = {sd.replace(".", "_")[:-1]: hf.replace(".", "_")[:-1] for sd, hf in unet_conversion_map}
|
104 |
+
return sd_hf_conversion_map
|
105 |
+
|
106 |
+
|
107 |
+
UNET_CONVERSION_MAP = make_unet_conversion_map()
|
108 |
+
|
109 |
+
|
110 |
+
class LoRAModule(torch.nn.Module):
|
111 |
+
"""
|
112 |
+
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
lora_name,
|
118 |
+
org_module: torch.nn.Module,
|
119 |
+
multiplier=1.0,
|
120 |
+
lora_dim=4,
|
121 |
+
alpha=1,
|
122 |
+
):
|
123 |
+
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
124 |
+
super().__init__()
|
125 |
+
self.lora_name = lora_name
|
126 |
+
|
127 |
+
if org_module.__class__.__name__ == "Conv2d" or org_module.__class__.__name__ == "LoRACompatibleConv":
|
128 |
+
in_dim = org_module.in_channels
|
129 |
+
out_dim = org_module.out_channels
|
130 |
+
else:
|
131 |
+
in_dim = org_module.in_features
|
132 |
+
out_dim = org_module.out_features
|
133 |
+
|
134 |
+
self.lora_dim = lora_dim
|
135 |
+
|
136 |
+
if org_module.__class__.__name__ == "Conv2d" or org_module.__class__.__name__ == "LoRACompatibleConv":
|
137 |
+
kernel_size = org_module.kernel_size
|
138 |
+
stride = org_module.stride
|
139 |
+
padding = org_module.padding
|
140 |
+
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
141 |
+
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
142 |
+
else:
|
143 |
+
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
144 |
+
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
145 |
+
|
146 |
+
if type(alpha) == torch.Tensor:
|
147 |
+
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
148 |
+
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
149 |
+
self.scale = alpha / self.lora_dim
|
150 |
+
self.register_buffer("alpha", torch.tensor(alpha)) # 勾配計算に含めない / not included in gradient calculation
|
151 |
+
|
152 |
+
# same as microsoft's
|
153 |
+
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
154 |
+
torch.nn.init.zeros_(self.lora_up.weight)
|
155 |
+
|
156 |
+
self.multiplier = multiplier
|
157 |
+
self.org_module = [org_module]
|
158 |
+
self.enabled = True
|
159 |
+
self.network: LoRANetwork = None
|
160 |
+
self.org_forward = None
|
161 |
+
|
162 |
+
# override org_module's forward method
|
163 |
+
def apply_to(self, multiplier=None):
|
164 |
+
if multiplier is not None:
|
165 |
+
self.multiplier = multiplier
|
166 |
+
if self.org_forward is None:
|
167 |
+
self.org_forward = self.org_module[0].forward
|
168 |
+
self.org_module[0].forward = self.forward
|
169 |
+
|
170 |
+
# restore org_module's forward method
|
171 |
+
def unapply_to(self):
|
172 |
+
if self.org_forward is not None:
|
173 |
+
self.org_module[0].forward = self.org_forward
|
174 |
+
|
175 |
+
# forward with lora
|
176 |
+
# scale is used LoRACompatibleConv, but we ignore it because we have multiplier
|
177 |
+
def forward(self, x, scale=1.0):
|
178 |
+
if not self.enabled:
|
179 |
+
return self.org_forward(x)
|
180 |
+
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
181 |
+
|
182 |
+
def set_network(self, network):
|
183 |
+
self.network = network
|
184 |
+
|
185 |
+
# merge lora weight to org weight
|
186 |
+
def merge_to(self, multiplier=1.0):
|
187 |
+
# get lora weight
|
188 |
+
lora_weight = self.get_weight(multiplier)
|
189 |
+
|
190 |
+
# get org weight
|
191 |
+
org_sd = self.org_module[0].state_dict()
|
192 |
+
org_weight = org_sd["weight"]
|
193 |
+
weight = org_weight + lora_weight.to(org_weight.device, dtype=org_weight.dtype)
|
194 |
+
|
195 |
+
# set weight to org_module
|
196 |
+
org_sd["weight"] = weight
|
197 |
+
self.org_module[0].load_state_dict(org_sd)
|
198 |
+
|
199 |
+
# restore org weight from lora weight
|
200 |
+
def restore_from(self, multiplier=1.0):
|
201 |
+
# get lora weight
|
202 |
+
lora_weight = self.get_weight(multiplier)
|
203 |
+
|
204 |
+
# get org weight
|
205 |
+
org_sd = self.org_module[0].state_dict()
|
206 |
+
org_weight = org_sd["weight"]
|
207 |
+
weight = org_weight - lora_weight.to(org_weight.device, dtype=org_weight.dtype)
|
208 |
+
|
209 |
+
# set weight to org_module
|
210 |
+
org_sd["weight"] = weight
|
211 |
+
self.org_module[0].load_state_dict(org_sd)
|
212 |
+
|
213 |
+
# return lora weight
|
214 |
+
def get_weight(self, multiplier=None):
|
215 |
+
if multiplier is None:
|
216 |
+
multiplier = self.multiplier
|
217 |
+
|
218 |
+
# get up/down weight from module
|
219 |
+
up_weight = self.lora_up.weight.to(torch.float)
|
220 |
+
down_weight = self.lora_down.weight.to(torch.float)
|
221 |
+
|
222 |
+
# pre-calculated weight
|
223 |
+
if len(down_weight.size()) == 2:
|
224 |
+
# linear
|
225 |
+
weight = self.multiplier * (up_weight @ down_weight) * self.scale
|
226 |
+
elif down_weight.size()[2:4] == (1, 1):
|
227 |
+
# conv2d 1x1
|
228 |
+
weight = (
|
229 |
+
self.multiplier
|
230 |
+
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
231 |
+
* self.scale
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
# conv2d 3x3
|
235 |
+
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
236 |
+
weight = self.multiplier * conved * self.scale
|
237 |
+
|
238 |
+
return weight
|
239 |
+
|
240 |
+
|
241 |
+
# Create network from weights for inference, weights are not loaded here
|
242 |
+
def create_network_from_weights(
|
243 |
+
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]], unet: UNet2DConditionModel, weights_sd: Dict, multiplier: float = 1.0
|
244 |
+
):
|
245 |
+
# get dim/alpha mapping
|
246 |
+
modules_dim = {}
|
247 |
+
modules_alpha = {}
|
248 |
+
for key, value in weights_sd.items():
|
249 |
+
if "." not in key:
|
250 |
+
continue
|
251 |
+
|
252 |
+
lora_name = key.split(".")[0]
|
253 |
+
if "alpha" in key:
|
254 |
+
modules_alpha[lora_name] = value
|
255 |
+
elif "lora_down" in key:
|
256 |
+
dim = value.size()[0]
|
257 |
+
modules_dim[lora_name] = dim
|
258 |
+
# logger.info(f"{lora_name} {value.size()} {dim}")
|
259 |
+
|
260 |
+
# support old LoRA without alpha
|
261 |
+
for key in modules_dim.keys():
|
262 |
+
if key not in modules_alpha:
|
263 |
+
modules_alpha[key] = modules_dim[key]
|
264 |
+
|
265 |
+
return LoRANetwork(text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha)
|
266 |
+
|
267 |
+
|
268 |
+
def merge_lora_weights(pipe, weights_sd: Dict, multiplier: float = 1.0):
|
269 |
+
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] if hasattr(pipe, "text_encoder_2") else [pipe.text_encoder]
|
270 |
+
unet = pipe.unet
|
271 |
+
|
272 |
+
lora_network = create_network_from_weights(text_encoders, unet, weights_sd, multiplier=multiplier)
|
273 |
+
lora_network.load_state_dict(weights_sd)
|
274 |
+
lora_network.merge_to(multiplier=multiplier)
|
275 |
+
|
276 |
+
|
277 |
+
# block weightや学習に対応しない簡易版 / simple version without block weight and training
|
278 |
+
class LoRANetwork(torch.nn.Module):
|
279 |
+
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
|
280 |
+
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
281 |
+
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
282 |
+
LORA_PREFIX_UNET = "lora_unet"
|
283 |
+
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
284 |
+
|
285 |
+
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
|
286 |
+
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
|
287 |
+
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
|
288 |
+
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
|
292 |
+
unet: UNet2DConditionModel,
|
293 |
+
multiplier: float = 1.0,
|
294 |
+
modules_dim: Optional[Dict[str, int]] = None,
|
295 |
+
modules_alpha: Optional[Dict[str, int]] = None,
|
296 |
+
varbose: Optional[bool] = False,
|
297 |
+
) -> None:
|
298 |
+
super().__init__()
|
299 |
+
self.multiplier = multiplier
|
300 |
+
|
301 |
+
logger.info("create LoRA network from weights")
|
302 |
+
|
303 |
+
# convert SDXL Stability AI's U-Net modules to Diffusers
|
304 |
+
converted = self.convert_unet_modules(modules_dim, modules_alpha)
|
305 |
+
if converted:
|
306 |
+
logger.info(f"converted {converted} Stability AI's U-Net LoRA modules to Diffusers (SDXL)")
|
307 |
+
|
308 |
+
# create module instances
|
309 |
+
def create_modules(
|
310 |
+
is_unet: bool,
|
311 |
+
text_encoder_idx: Optional[int], # None, 1, 2
|
312 |
+
root_module: torch.nn.Module,
|
313 |
+
target_replace_modules: List[torch.nn.Module],
|
314 |
+
) -> List[LoRAModule]:
|
315 |
+
prefix = (
|
316 |
+
self.LORA_PREFIX_UNET
|
317 |
+
if is_unet
|
318 |
+
else (
|
319 |
+
self.LORA_PREFIX_TEXT_ENCODER
|
320 |
+
if text_encoder_idx is None
|
321 |
+
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
|
322 |
+
)
|
323 |
+
)
|
324 |
+
loras = []
|
325 |
+
skipped = []
|
326 |
+
for name, module in root_module.named_modules():
|
327 |
+
if module.__class__.__name__ in target_replace_modules:
|
328 |
+
for child_name, child_module in module.named_modules():
|
329 |
+
is_linear = (
|
330 |
+
child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "LoRACompatibleLinear"
|
331 |
+
)
|
332 |
+
is_conv2d = (
|
333 |
+
child_module.__class__.__name__ == "Conv2d" or child_module.__class__.__name__ == "LoRACompatibleConv"
|
334 |
+
)
|
335 |
+
|
336 |
+
if is_linear or is_conv2d:
|
337 |
+
lora_name = prefix + "." + name + "." + child_name
|
338 |
+
lora_name = lora_name.replace(".", "_")
|
339 |
+
|
340 |
+
if lora_name not in modules_dim:
|
341 |
+
# logger.info(f"skipped {lora_name} (not found in modules_dim)")
|
342 |
+
skipped.append(lora_name)
|
343 |
+
continue
|
344 |
+
|
345 |
+
dim = modules_dim[lora_name]
|
346 |
+
alpha = modules_alpha[lora_name]
|
347 |
+
lora = LoRAModule(
|
348 |
+
lora_name,
|
349 |
+
child_module,
|
350 |
+
self.multiplier,
|
351 |
+
dim,
|
352 |
+
alpha,
|
353 |
+
)
|
354 |
+
loras.append(lora)
|
355 |
+
return loras, skipped
|
356 |
+
|
357 |
+
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
|
358 |
+
|
359 |
+
# create LoRA for text encoder
|
360 |
+
# 毎回すべてのモジュールを作るのは無駄なので要検討 / it is wasteful to create all modules every time, need to consider
|
361 |
+
self.text_encoder_loras: List[LoRAModule] = []
|
362 |
+
skipped_te = []
|
363 |
+
for i, text_encoder in enumerate(text_encoders):
|
364 |
+
if len(text_encoders) > 1:
|
365 |
+
index = i + 1
|
366 |
+
else:
|
367 |
+
index = None
|
368 |
+
|
369 |
+
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
370 |
+
self.text_encoder_loras.extend(text_encoder_loras)
|
371 |
+
skipped_te += skipped
|
372 |
+
logger.info(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
373 |
+
if len(skipped_te) > 0:
|
374 |
+
logger.warning(f"skipped {len(skipped_te)} modules because of missing weight for text encoder.")
|
375 |
+
|
376 |
+
# extend U-Net target modules to include Conv2d 3x3
|
377 |
+
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE + LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
378 |
+
|
379 |
+
self.unet_loras: List[LoRAModule]
|
380 |
+
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
|
381 |
+
logger.info(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
382 |
+
if len(skipped_un) > 0:
|
383 |
+
logger.warning(f"skipped {len(skipped_un)} modules because of missing weight for U-Net.")
|
384 |
+
|
385 |
+
# assertion
|
386 |
+
names = set()
|
387 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
388 |
+
names.add(lora.lora_name)
|
389 |
+
for lora_name in modules_dim.keys():
|
390 |
+
assert lora_name in names, f"{lora_name} is not found in created LoRA modules."
|
391 |
+
|
392 |
+
# make to work load_state_dict
|
393 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
394 |
+
self.add_module(lora.lora_name, lora)
|
395 |
+
|
396 |
+
# SDXL: convert SDXL Stability AI's U-Net modules to Diffusers
|
397 |
+
def convert_unet_modules(self, modules_dim, modules_alpha):
|
398 |
+
converted_count = 0
|
399 |
+
not_converted_count = 0
|
400 |
+
|
401 |
+
map_keys = list(UNET_CONVERSION_MAP.keys())
|
402 |
+
map_keys.sort()
|
403 |
+
|
404 |
+
for key in list(modules_dim.keys()):
|
405 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_UNET + "_"):
|
406 |
+
search_key = key.replace(LoRANetwork.LORA_PREFIX_UNET + "_", "")
|
407 |
+
position = bisect.bisect_right(map_keys, search_key)
|
408 |
+
map_key = map_keys[position - 1]
|
409 |
+
if search_key.startswith(map_key):
|
410 |
+
new_key = key.replace(map_key, UNET_CONVERSION_MAP[map_key])
|
411 |
+
modules_dim[new_key] = modules_dim[key]
|
412 |
+
modules_alpha[new_key] = modules_alpha[key]
|
413 |
+
del modules_dim[key]
|
414 |
+
del modules_alpha[key]
|
415 |
+
converted_count += 1
|
416 |
+
else:
|
417 |
+
not_converted_count += 1
|
418 |
+
assert (
|
419 |
+
converted_count == 0 or not_converted_count == 0
|
420 |
+
), f"some modules are not converted: {converted_count} converted, {not_converted_count} not converted"
|
421 |
+
return converted_count
|
422 |
+
|
423 |
+
def set_multiplier(self, multiplier):
|
424 |
+
self.multiplier = multiplier
|
425 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
426 |
+
lora.multiplier = self.multiplier
|
427 |
+
|
428 |
+
def apply_to(self, multiplier=1.0, apply_text_encoder=True, apply_unet=True):
|
429 |
+
if apply_text_encoder:
|
430 |
+
logger.info("enable LoRA for text encoder")
|
431 |
+
for lora in self.text_encoder_loras:
|
432 |
+
lora.apply_to(multiplier)
|
433 |
+
if apply_unet:
|
434 |
+
logger.info("enable LoRA for U-Net")
|
435 |
+
for lora in self.unet_loras:
|
436 |
+
lora.apply_to(multiplier)
|
437 |
+
|
438 |
+
def unapply_to(self):
|
439 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
440 |
+
lora.unapply_to()
|
441 |
+
|
442 |
+
def merge_to(self, multiplier=1.0):
|
443 |
+
logger.info("merge LoRA weights to original weights")
|
444 |
+
for lora in tqdm(self.text_encoder_loras + self.unet_loras):
|
445 |
+
lora.merge_to(multiplier)
|
446 |
+
logger.info(f"weights are merged")
|
447 |
+
|
448 |
+
def restore_from(self, multiplier=1.0):
|
449 |
+
logger.info("restore LoRA weights from original weights")
|
450 |
+
for lora in tqdm(self.text_encoder_loras + self.unet_loras):
|
451 |
+
lora.restore_from(multiplier)
|
452 |
+
logger.info(f"weights are restored")
|
453 |
+
|
454 |
+
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
455 |
+
# convert SDXL Stability AI's state dict to Diffusers' based state dict
|
456 |
+
map_keys = list(UNET_CONVERSION_MAP.keys()) # prefix of U-Net modules
|
457 |
+
map_keys.sort()
|
458 |
+
for key in list(state_dict.keys()):
|
459 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_UNET + "_"):
|
460 |
+
search_key = key.replace(LoRANetwork.LORA_PREFIX_UNET + "_", "")
|
461 |
+
position = bisect.bisect_right(map_keys, search_key)
|
462 |
+
map_key = map_keys[position - 1]
|
463 |
+
if search_key.startswith(map_key):
|
464 |
+
new_key = key.replace(map_key, UNET_CONVERSION_MAP[map_key])
|
465 |
+
state_dict[new_key] = state_dict[key]
|
466 |
+
del state_dict[key]
|
467 |
+
|
468 |
+
# in case of V2, some weights have different shape, so we need to convert them
|
469 |
+
# because V2 LoRA is based on U-Net created by use_linear_projection=False
|
470 |
+
my_state_dict = self.state_dict()
|
471 |
+
for key in state_dict.keys():
|
472 |
+
if state_dict[key].size() != my_state_dict[key].size():
|
473 |
+
# logger.info(f"convert {key} from {state_dict[key].size()} to {my_state_dict[key].size()}")
|
474 |
+
state_dict[key] = state_dict[key].view(my_state_dict[key].size())
|
475 |
+
|
476 |
+
return super().load_state_dict(state_dict, strict)
|
477 |
+
|
478 |
+
|
479 |
+
if __name__ == "__main__":
|
480 |
+
# sample code to use LoRANetwork
|
481 |
+
import os
|
482 |
+
import argparse
|
483 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
|
484 |
+
import torch
|
485 |
+
|
486 |
+
device = get_preferred_device()
|
487 |
+
|
488 |
+
parser = argparse.ArgumentParser()
|
489 |
+
parser.add_argument("--model_id", type=str, default=None, help="model id for huggingface")
|
490 |
+
parser.add_argument("--lora_weights", type=str, default=None, help="path to LoRA weights")
|
491 |
+
parser.add_argument("--sdxl", action="store_true", help="use SDXL model")
|
492 |
+
parser.add_argument("--prompt", type=str, default="A photo of cat", help="prompt text")
|
493 |
+
parser.add_argument("--negative_prompt", type=str, default="", help="negative prompt text")
|
494 |
+
parser.add_argument("--seed", type=int, default=0, help="random seed")
|
495 |
+
args = parser.parse_args()
|
496 |
+
|
497 |
+
image_prefix = args.model_id.replace("/", "_") + "_"
|
498 |
+
|
499 |
+
# load Diffusers model
|
500 |
+
logger.info(f"load model from {args.model_id}")
|
501 |
+
pipe: Union[StableDiffusionPipeline, StableDiffusionXLPipeline]
|
502 |
+
if args.sdxl:
|
503 |
+
# use_safetensors=True does not work with 0.18.2
|
504 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(args.model_id, variant="fp16", torch_dtype=torch.float16)
|
505 |
+
else:
|
506 |
+
pipe = StableDiffusionPipeline.from_pretrained(args.model_id, variant="fp16", torch_dtype=torch.float16)
|
507 |
+
pipe.to(device)
|
508 |
+
pipe.set_use_memory_efficient_attention_xformers(True)
|
509 |
+
|
510 |
+
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] if args.sdxl else [pipe.text_encoder]
|
511 |
+
|
512 |
+
# load LoRA weights
|
513 |
+
logger.info(f"load LoRA weights from {args.lora_weights}")
|
514 |
+
if os.path.splitext(args.lora_weights)[1] == ".safetensors":
|
515 |
+
from safetensors.torch import load_file
|
516 |
+
|
517 |
+
lora_sd = load_file(args.lora_weights)
|
518 |
+
else:
|
519 |
+
lora_sd = torch.load(args.lora_weights)
|
520 |
+
|
521 |
+
# create by LoRA weights and load weights
|
522 |
+
logger.info(f"create LoRA network")
|
523 |
+
lora_network: LoRANetwork = create_network_from_weights(text_encoders, pipe.unet, lora_sd, multiplier=1.0)
|
524 |
+
|
525 |
+
logger.info(f"load LoRA network weights")
|
526 |
+
lora_network.load_state_dict(lora_sd)
|
527 |
+
|
528 |
+
lora_network.to(device, dtype=pipe.unet.dtype) # required to apply_to. merge_to works without this
|
529 |
+
|
530 |
+
# 必要があれば、元のモデルの重みをバックアップしておく
|
531 |
+
# back-up unet/text encoder weights if necessary
|
532 |
+
def detach_and_move_to_cpu(state_dict):
|
533 |
+
for k, v in state_dict.items():
|
534 |
+
state_dict[k] = v.detach().cpu()
|
535 |
+
return state_dict
|
536 |
+
|
537 |
+
org_unet_sd = pipe.unet.state_dict()
|
538 |
+
detach_and_move_to_cpu(org_unet_sd)
|
539 |
+
|
540 |
+
org_text_encoder_sd = pipe.text_encoder.state_dict()
|
541 |
+
detach_and_move_to_cpu(org_text_encoder_sd)
|
542 |
+
|
543 |
+
if args.sdxl:
|
544 |
+
org_text_encoder_2_sd = pipe.text_encoder_2.state_dict()
|
545 |
+
detach_and_move_to_cpu(org_text_encoder_2_sd)
|
546 |
+
|
547 |
+
def seed_everything(seed):
|
548 |
+
torch.manual_seed(seed)
|
549 |
+
torch.cuda.manual_seed_all(seed)
|
550 |
+
np.random.seed(seed)
|
551 |
+
random.seed(seed)
|
552 |
+
|
553 |
+
# create image with original weights
|
554 |
+
logger.info(f"create image with original weights")
|
555 |
+
seed_everything(args.seed)
|
556 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
557 |
+
image.save(image_prefix + "original.png")
|
558 |
+
|
559 |
+
# apply LoRA network to the model: slower than merge_to, but can be reverted easily
|
560 |
+
logger.info(f"apply LoRA network to the model")
|
561 |
+
lora_network.apply_to(multiplier=1.0)
|
562 |
+
|
563 |
+
logger.info(f"create image with applied LoRA")
|
564 |
+
seed_everything(args.seed)
|
565 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
566 |
+
image.save(image_prefix + "applied_lora.png")
|
567 |
+
|
568 |
+
# unapply LoRA network to the model
|
569 |
+
logger.info(f"unapply LoRA network to the model")
|
570 |
+
lora_network.unapply_to()
|
571 |
+
|
572 |
+
logger.info(f"create image with unapplied LoRA")
|
573 |
+
seed_everything(args.seed)
|
574 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
575 |
+
image.save(image_prefix + "unapplied_lora.png")
|
576 |
+
|
577 |
+
# merge LoRA network to the model: faster than apply_to, but requires back-up of original weights (or unmerge_to)
|
578 |
+
logger.info(f"merge LoRA network to the model")
|
579 |
+
lora_network.merge_to(multiplier=1.0)
|
580 |
+
|
581 |
+
logger.info(f"create image with LoRA")
|
582 |
+
seed_everything(args.seed)
|
583 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
584 |
+
image.save(image_prefix + "merged_lora.png")
|
585 |
+
|
586 |
+
# restore (unmerge) LoRA weights: numerically unstable
|
587 |
+
# マージされた重みを元に戻す。計算誤差のため、元の重みと完全に一致しないことがあるかもしれない
|
588 |
+
# 保存したstate_dictから元の重みを復元するのが確実
|
589 |
+
logger.info(f"restore (unmerge) LoRA weights")
|
590 |
+
lora_network.restore_from(multiplier=1.0)
|
591 |
+
|
592 |
+
logger.info(f"create image without LoRA")
|
593 |
+
seed_everything(args.seed)
|
594 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
595 |
+
image.save(image_prefix + "unmerged_lora.png")
|
596 |
+
|
597 |
+
# restore original weights
|
598 |
+
logger.info(f"restore original weights")
|
599 |
+
pipe.unet.load_state_dict(org_unet_sd)
|
600 |
+
pipe.text_encoder.load_state_dict(org_text_encoder_sd)
|
601 |
+
if args.sdxl:
|
602 |
+
pipe.text_encoder_2.load_state_dict(org_text_encoder_2_sd)
|
603 |
+
|
604 |
+
logger.info(f"create image with restored original weights")
|
605 |
+
seed_everything(args.seed)
|
606 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
607 |
+
image.save(image_prefix + "restore_original.png")
|
608 |
+
|
609 |
+
# use convenience function to merge LoRA weights
|
610 |
+
logger.info(f"merge LoRA weights with convenience function")
|
611 |
+
merge_lora_weights(pipe, lora_sd, multiplier=1.0)
|
612 |
+
|
613 |
+
logger.info(f"create image with merged LoRA weights")
|
614 |
+
seed_everything(args.seed)
|
615 |
+
image = pipe(args.prompt, negative_prompt=args.negative_prompt).images[0]
|
616 |
+
image.save(image_prefix + "convenience_merged_lora.png")
|