ACCC1380 commited on
Commit
9e0276b
1 Parent(s): c627372

Upload lora-scripts/sd-scripts/finetune/make_captions.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/finetune/make_captions.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ import json
5
+ import random
6
+ import sys
7
+
8
+ from pathlib import Path
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ import numpy as np
12
+
13
+ import torch
14
+ from library.device_utils import init_ipex, get_preferred_device
15
+ init_ipex()
16
+
17
+ from torchvision import transforms
18
+ from torchvision.transforms.functional import InterpolationMode
19
+ sys.path.append(os.path.dirname(__file__))
20
+ from blip.blip import blip_decoder, is_url
21
+ import library.train_util as train_util
22
+ from library.utils import setup_logging
23
+ setup_logging()
24
+ import logging
25
+ logger = logging.getLogger(__name__)
26
+
27
+ DEVICE = get_preferred_device()
28
+
29
+
30
+ IMAGE_SIZE = 384
31
+
32
+ # 正方形でいいのか? という気がするがソースがそうなので
33
+ IMAGE_TRANSFORM = transforms.Compose(
34
+ [
35
+ transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), interpolation=InterpolationMode.BICUBIC),
36
+ transforms.ToTensor(),
37
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
38
+ ]
39
+ )
40
+
41
+
42
+ # 共通化したいが微妙に処理が異なる……
43
+ class ImageLoadingTransformDataset(torch.utils.data.Dataset):
44
+ def __init__(self, image_paths):
45
+ self.images = image_paths
46
+
47
+ def __len__(self):
48
+ return len(self.images)
49
+
50
+ def __getitem__(self, idx):
51
+ img_path = self.images[idx]
52
+
53
+ try:
54
+ image = Image.open(img_path).convert("RGB")
55
+ # convert to tensor temporarily so dataloader will accept it
56
+ tensor = IMAGE_TRANSFORM(image)
57
+ except Exception as e:
58
+ logger.error(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
59
+ return None
60
+
61
+ return (tensor, img_path)
62
+
63
+
64
+ def collate_fn_remove_corrupted(batch):
65
+ """Collate function that allows to remove corrupted examples in the
66
+ dataloader. It expects that the dataloader returns 'None' when that occurs.
67
+ The 'None's in the batch are removed.
68
+ """
69
+ # Filter out all the Nones (corrupted examples)
70
+ batch = list(filter(lambda x: x is not None, batch))
71
+ return batch
72
+
73
+
74
+ def main(args):
75
+ # fix the seed for reproducibility
76
+ seed = args.seed # + utils.get_rank()
77
+ torch.manual_seed(seed)
78
+ np.random.seed(seed)
79
+ random.seed(seed)
80
+
81
+ if not os.path.exists("blip"):
82
+ args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path
83
+
84
+ cwd = os.getcwd()
85
+ logger.info(f"Current Working Directory is: {cwd}")
86
+ os.chdir("finetune")
87
+ if not is_url(args.caption_weights) and not os.path.isfile(args.caption_weights):
88
+ args.caption_weights = os.path.join("..", args.caption_weights)
89
+
90
+ logger.info(f"load images from {args.train_data_dir}")
91
+ train_data_dir_path = Path(args.train_data_dir)
92
+ image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive)
93
+ logger.info(f"found {len(image_paths)} images.")
94
+
95
+ logger.info(f"loading BLIP caption: {args.caption_weights}")
96
+ model = blip_decoder(pretrained=args.caption_weights, image_size=IMAGE_SIZE, vit="large", med_config="./blip/med_config.json")
97
+ model.eval()
98
+ model = model.to(DEVICE)
99
+ logger.info("BLIP loaded")
100
+
101
+ # captioningする
102
+ def run_batch(path_imgs):
103
+ imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE)
104
+
105
+ with torch.no_grad():
106
+ if args.beam_search:
107
+ captions = model.generate(
108
+ imgs, sample=False, num_beams=args.num_beams, max_length=args.max_length, min_length=args.min_length
109
+ )
110
+ else:
111
+ captions = model.generate(
112
+ imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length
113
+ )
114
+
115
+ for (image_path, _), caption in zip(path_imgs, captions):
116
+ with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f:
117
+ f.write(caption + "\n")
118
+ if args.debug:
119
+ logger.info(f'{image_path} {caption}')
120
+
121
+ # 読み込みの高速化のためにDataLoaderを使うオプション
122
+ if args.max_data_loader_n_workers is not None:
123
+ dataset = ImageLoadingTransformDataset(image_paths)
124
+ data = torch.utils.data.DataLoader(
125
+ dataset,
126
+ batch_size=args.batch_size,
127
+ shuffle=False,
128
+ num_workers=args.max_data_loader_n_workers,
129
+ collate_fn=collate_fn_remove_corrupted,
130
+ drop_last=False,
131
+ )
132
+ else:
133
+ data = [[(None, ip)] for ip in image_paths]
134
+
135
+ b_imgs = []
136
+ for data_entry in tqdm(data, smoothing=0.0):
137
+ for data in data_entry:
138
+ if data is None:
139
+ continue
140
+
141
+ img_tensor, image_path = data
142
+ if img_tensor is None:
143
+ try:
144
+ raw_image = Image.open(image_path)
145
+ if raw_image.mode != "RGB":
146
+ raw_image = raw_image.convert("RGB")
147
+ img_tensor = IMAGE_TRANSFORM(raw_image)
148
+ except Exception as e:
149
+ logger.error(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
150
+ continue
151
+
152
+ b_imgs.append((image_path, img_tensor))
153
+ if len(b_imgs) >= args.batch_size:
154
+ run_batch(b_imgs)
155
+ b_imgs.clear()
156
+ if len(b_imgs) > 0:
157
+ run_batch(b_imgs)
158
+
159
+ logger.info("done!")
160
+
161
+
162
+ def setup_parser() -> argparse.ArgumentParser:
163
+ parser = argparse.ArgumentParser()
164
+ parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
165
+ parser.add_argument(
166
+ "--caption_weights",
167
+ type=str,
168
+ default="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth",
169
+ help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)",
170
+ )
171
+ parser.add_argument(
172
+ "--caption_extention",
173
+ type=str,
174
+ default=None,
175
+ help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)",
176
+ )
177
+ parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
178
+ parser.add_argument(
179
+ "--beam_search",
180
+ action="store_true",
181
+ help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)",
182
+ )
183
+ parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
184
+ parser.add_argument(
185
+ "--max_data_loader_n_workers",
186
+ type=int,
187
+ default=None,
188
+ help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
189
+ )
190
+ parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)")
191
+ parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p")
192
+ parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長")
193
+ parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長")
194
+ parser.add_argument("--seed", default=42, type=int, help="seed for reproducibility / 再現性を確保するための乱数seed")
195
+ parser.add_argument("--debug", action="store_true", help="debug mode")
196
+ parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する")
197
+
198
+ return parser
199
+
200
+
201
+ if __name__ == "__main__":
202
+ parser = setup_parser()
203
+
204
+ args = parser.parse_args()
205
+
206
+ # スペルミスしていたオプションを復元する
207
+ if args.caption_extention is not None:
208
+ args.caption_extension = args.caption_extention
209
+
210
+ main(args)