configs:
- config_name: default
data_files:
- split: test
path: data/test-*
- split: train
path: data/train-*
- split: validation
path: data/validation-*
dataset_info:
features:
- name: tokens
sequence: string
- name: ner_tags
sequence: int64
- name: dataset
dtype: string
splits:
- name: test
num_bytes: 16147720
num_examples: 42144
- name: train
num_bytes: 161576681
num_examples: 349195
- name: validation
num_bytes: 12398792
num_examples: 33464
download_size: 43074463
dataset_size: 190123193
task_categories:
- token-classification
language:
- fr
size_categories:
- 100K<n<1M
license: cc-by-4.0
Dataset information
Dataset concatenating NER datasets, available in French and open-source, for 3 entities (LOC, PER, ORG).
There are a total of 420,264 rows, of which 346,071 are for training, 32,951 for validation and 41,242 for testing.
Our methodology is described in a blog post available in English or French.
Usage
from datasets import load_dataset
dataset = load_dataset("CATIE-AQ/frenchNER_3entities")
Dataset
Details of rows
Dataset Original | Splits | Note |
---|---|---|
Multiconer | 16,548 train / 857 validation / 0 test | In practice, we use the original validation set as test set and creat a new val set from 5% of train created, i.e. 15,721 train / 827 validation / 857 test |
Multinerd | 140,880 train / 17,610 val / 17,695 test | |
Pii-masking-200k | 61,958 train / 0 validation / 0 test | Only dataset without duplicate data or leaks |
Wikiann | 20,000 train / 10,000 val / 10,000 test | |
Wikiner | 120,682 train / 0 validation / 13,410 test | In practice, 5% of val created from train set, i.e. 113,296 train / 5,994 validation / 13,393 test |
Removing duplicate data and leaks
The sum of the values of the datasets listed here gives the following result:
DatasetDict({
train: Dataset({
features: ['tokens', 'ner_tags', 'dataset'],
num_rows: 351855
})
validation: Dataset({
features: ['tokens', 'ner_tags', 'dataset'],
num_rows: 34431
})
test: Dataset({
features: ['tokens', 'ner_tags', 'dataset'],
num_rows: 41945
})
})
However, a data item in training split A may not be in A's test split, but may be present in B's test set, creating a leak when we create the A+B dataset.
The same logic applies to duplicate data. So we need to make sure we remove them.
After our clean-up, we finally have the following numbers:
DatasetDict({
train: Dataset({
features: ['tokens', 'ner_tags', 'dataset'],
num_rows: 346071
})
validation: Dataset({
features: ['tokens', 'ner_tags', 'dataset'],
num_rows: 32951
})
test: Dataset({
features: ['tokens', 'ner_tags', 'dataset'],
num_rows: 41242
})
})
Note: in practice, the test split contains 8 lines which we failed to deduplicate, i.e. 0.019%.
Details of entities (after cleaning)
Datasets |
Splits |
O |
PER |
LOC |
ORG |
---|---|---|---|---|---|
Multiconer |
train |
200,093 |
18,060 |
7,165 |
6,967 |
validation |
10,900 |
1,069 |
389 |
328 |
|
test |
11,287 |
979 |
387 |
381 |
|
Multinerd |
train |
3,041,998 |
149,128 |
105,531 |
68,796 |
validation |
410,934 |
17,479 |
13,988 |
3,475 |
|
test |
417,886 |
18,567 |
14,083 |
3,636 |
|
Pii-masking-200k |
train |
2,405,215 |
29,838 |
42,154 |
12,310 |
Wikiann |
train |
60,165 |
20,288 |
17,033 |
24,429 |
validation |
30,046 |
10,098 |
8,698 |
12,819 |
|
test |
31,488 |
10,764 |
9,512 |
13,480 |
|
Wikiner |
train |
2,691,294 |
110,079 |
131,839 |
38,988 |
validation |
140,935 |
5,481 |
7,204 |
2,121 |
|
test |
313,210 |
13,324 |
15,213 |
3,894 |
|
Total |
train |
8,398,765 |
327,393 |
303,722 |
151,490 |
validation |
592,815 |
34,127 |
30,279 |
18,743 |
|
test |
773,871 |
43,634 |
39,195 |
21,391 |
Columns
dataset_train = dataset['train'].to_pandas()
dataset_train.head()
tokens ner_tags dataset
0 [On, a, souvent, voulu, faire, de, La, Bruyère... [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... wikiner
1 [Les, améliorations, apportées, par, rapport, ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, ... wikiner
2 [Cette, assemblée, de, notables, ,, réunie, en... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, ... wikiner
3 [Wittgenstein, projetait, en, effet, d', élabo... [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... wikiner
4 [Le, premier, écrivain, à, écrire, des, fictio... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ... wikiner
- the
tokens
column contains the tokens - the
ner_tags
column contains the NER tags (IOB format with 0="O", 1="PER", 2="ORG" and 3="LOC") - the
dataset
column identifies the row's original dataset (if you wish to apply filters to it)
Split
train
corresponds to the concatenation ofmulticoner
+multinerd
+pii-masking-200k
+wikiann
+wikiner
validation
corresponds to the concatenation ofmulticoner
+multinerd
+wikiann
+wikiner
test
corresponds to the concatenation ofmulticoner
+multinerd
+wikiann
+wikiner
Citations
multiconer
@inproceedings{multiconer2-report,
title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
year={2023},
publisher={Association for Computational Linguistics}}
@article{multiconer2-data,
title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
year={2023}}
multinerd
@inproceedings{tedeschi-navigli-2022-multinerd,
title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
author = "Tedeschi, Simone and Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.60",
doi = "10.18653/v1/2022.findings-naacl.60",
pages = "801--812"}
pii-masking-200k
@misc {ai4privacy_2023,
author = { {ai4Privacy} },
title = { pii-masking-200k (Revision 1d4c0a1) },
year = 2023,
url = { https://huggingface.co/datasets/ai4privacy/pii-masking-200k },
doi = { 10.57967/hf/1532 },
publisher = { Hugging Face }}
wikiann
@inproceedings{rahimi-etal-2019-massively,
title = "Massively Multilingual Transfer for {NER}",
author = "Rahimi, Afshin and Li, Yuan and Cohn, Trevor",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1015",
pages = "151--164"}
wikiner
@article{NOTHMAN2013151,
title = {Learning multilingual named entity recognition from Wikipedia},
journal = {Artificial Intelligence},
volume = {194},
pages = {151-175},
year = {2013},
note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
issn = {0004-3702},
doi = {https://doi.org/10.1016/j.artint.2012.03.006},
url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
frenchNER_3entities
@misc {frenchNER2024,
author = { {BOURDOIS, Loïck} },
organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
title = { frenchNER_3entities },
year = 2024,
url = { https://huggingface.co/CATIE-AQ/frenchNER_3entities },
doi = { 10.57967/hf/1751 },
publisher = { Hugging Face }
}