ASCEND / README.md
albertvillanova's picture
Convert dataset to Parquet
b65b9bb verified
|
raw
history blame
4.56 kB
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in
Multi-turn Conversation'
tags:
- speech-recognition
- code-switching
dataset_info:
config_name: main
features:
- name: id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: duration
dtype: float32
- name: language
dtype: string
- name: original_speaker_id
dtype: int64
- name: session_id
dtype: int64
- name: topic
dtype: string
splits:
- name: train
num_bytes: 1014573740.14
num_examples: 9869
- name: test
num_bytes: 106171230.135
num_examples: 1315
- name: validation
num_bytes: 106772517.43
num_examples: 1130
download_size: 1223536062
dataset_size: 1227517487.7050002
configs:
- config_name: main
data_files:
- split: train
path: main/train-*
- split: test
path: main/test-*
- split: validation
path: main/validation-*
default: true
---
# Dataset Card for ASCEND
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
- [Data Splits](#data-instances)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/2112.06223
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
### Supported Tasks and Leaderboards
Code-switching
### Languages
Chinese and English
## Usage
To obtain the full dataset (complete with train, validation, and test set), simply run this:
```
import datasets
dataset = datasets.load_dataset("CAiRE/ASCEND")
```
## Dataset Structure
A typical data point comprises the path to the audio file, the loaded audio array, and its transcription. Additional fields include datapoint id, duration, language, speaker id, session id, and topic.
```
{
'id': '00644',
'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
'audio': {
'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
'array': array([-6.1035156e-05, -1.8310547e-04, 3.0517578e-05, ...,
0.0000000e+00, -3.0517578e-05, 0.0000000e+00
], dtype = float32),
'sampling_rate': 16000
},
'transcription': '因为你不可能邀你的female friends去说走我们去play basketball',
'duration': 5.489999771118164,
'language': 'mixed',
'original_speaker_id': 3,
'session_id': 2,
'topic': 'sports'
}
```
### Data Splits
Number of utterances: 9,869 train, 1,130 validation, and 1,315 test.
## Additional Information
For comprehensive explanations, please check [our paper](https://arxiv.org/pdf/2112.06223.pdf).
### Licensing Information
Creative Common Attribution Share-Alike 4.0 International (CC-BY-SA 4.0)
### Citation Information
If you use our dataset, please cite us:
```
@inproceedings{lovenia2022ascend,
title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
year={2022}
```