esconv_llm / README.md
Estwld's picture
Update README.md
c39b19f verified
|
raw
history blame
2.66 kB
metadata
dataset_info:
  features:
    - name: conversations
      list:
        - name: content
          dtype: string
        - name: role
          dtype: string
        - name: strategy
          dtype: string
    - name: emotion
      dtype: string
    - name: experience
      dtype: string
    - name: problem
      dtype: string
    - name: situation
      dtype: string
  splits:
    - name: train
      num_bytes: 3087133
      num_examples: 910
    - name: validation
      num_bytes: 662566
      num_examples: 195
    - name: test
      num_bytes: 669299
      num_examples: 195
  download_size: 2158864
  dataset_size: 4418998
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
license: apache-2.0
task_categories:
  - text-generation
  - text-classification
language:
  - en
tags:
  - esconv
  - empathetic
size_categories:
  - 1K<n<10K

ESCONV for LLM

 This repository contains a reformatted version of the ESCONV dataset, tailored for seamless integration with Language Model (LLM) training and inference. The original dataset's format posed challenges for direct application in LLM tasks, prompting us to restructure and clean the data. 

Data Restructuring

  1. Assigned the user role to the usr, assistant role to the sys.
  2. Removed the survey_scor and 'supporter' fields to streamline the data.

Data Format

Each entry in the reformatted dataset consists of the following fields: 

  • conversations: A list of dictionaries, where each dictionary represents a turn in the dialogue and contains:
    • role: A string indicating the speaker's role, either user or assistant.
    • content: A string containing the dialogue content.
    • strategy: A string containing the strategy of current dialogue content, if role is user, strategy is NONE.
  • emotion: A string indicating the emotional label associated with the dialogue (corresponds to the emotion_type field in the original dataset).
  • situation: A string describing the situational label for the dialogue (corresponds to the situation field in the original dataset).
  • problem: A string describing the problem label for the user (corresponds to the problem_type field in the original dataset).
  • experience: A string, corresponds to the experience_type field in the original dataset.

Dataset Statistics

Dataset Total Turn Average Turn Average Length
Train 26,648 29.284 14.547
Validation 5,678 29.118 14.630
Test 6,039 30.969 13.756