genomics-long-range-benchmark / genomics-long-range-benchmark.py
etrop's picture
update the return values for cage
4504d2d
raw
history blame
38 kB
import gzip
import os
import shutil
import urllib
from pathlib import Path
from typing import List
from tqdm import tqdm
from ast import literal_eval
import re
import datasets
import numpy as np
import pandas as pd
from datasets import DatasetInfo
from pyfaidx import Fasta
from abc import ABC, abstractmethod
"""
----------------------------------------------------------------------------------------
Reference Genome URLS:
----------------------------------------------------------------------------------------
"""
H38_REFERENCE_GENOME_URL = (
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
)
H19_REFERENCE_GENOME_URL = (
"https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/" "hg19.fa.gz"
)
"""
----------------------------------------------------------------------------------------
Task Specific Handlers:
----------------------------------------------------------------------------------------
"""
class GenomicLRATaskHandler(ABC):
"""
Abstract method for the Genomic LRA task handlers.
"""
@abstractmethod
def __init__(self, **kwargs):
pass
@abstractmethod
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the task
"""
pass
def split_generators(
self, dl_manager, cache_dir_root
) -> List[datasets.SplitGenerator]:
"""
Downloads required files using dl_manager and separates them by split.
"""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"handler": self, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
),
]
@abstractmethod
def generate_examples(self, split):
"""
A generator that yields examples for the specified split.
"""
pass
@staticmethod
def hook(t):
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks just transferred [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
def download_and_extract_gz(self, file_url, cache_dir_root):
"""
Downloads and extracts a gz file into the given cache directory. Returns the
full file path of the extracted gz file.
Args:
file_url: url of the gz file to be downloaded and extracted.
cache_dir_root: Directory to extract file into.
"""
file_fname = Path(file_url).stem
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)
if not os.path.exists(file_complete_path):
if not os.path.exists(file_complete_path + ".gz"):
with tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
miniters=1,
desc=file_url.split("/")[-1],
) as t:
urllib.request.urlretrieve(
file_url, file_complete_path + ".gz", reporthook=self.hook(t)
)
with gzip.open(file_complete_path + ".gz", "rb") as file_in:
with open(file_complete_path, "wb") as file_out:
shutil.copyfileobj(file_in, file_out)
return file_complete_path
class CagePredictionHandler(GenomicLRATaskHandler):
"""
Handler for the CAGE prediction task.
"""
NUM_TRAIN = 33891
NUM_TEST = 1922
NUM_VALID = 2195
DEFAULT_LENGTH = 114688 # 896 x 128bp
TARGET_SHAPE = (
896,
50,
) # 50 is a subset of CAGE tracks from the original enformer dataset
NPZ_SPLIT = 1000 # number of files per npz file.
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
"""
Creates a new handler for the CAGE task.
Args:
sequence_length: allows for increasing sequence context. Sequence length
must be an even multiple of 128 to align with binned labels. Note:
increasing sequence length may decrease the number of usable samples.
"""
self.reference_genome = None
self.coordinate_csv_file = None
self.target_files_by_split = {}
assert (sequence_length // 128) % 2 == 0, (
f"Requested sequence length must be an even multuple of 128 to align "
f"with the binned labels."
)
self.sequence_length = sequence_length
if self.sequence_length < self.DEFAULT_LENGTH:
self.TARGET_SHAPE = (self.sequence_length // 128, 50)
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the CAGE dataset. Each example
includes a genomic sequence and a 2D array of labels
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# array of sequence length x num_labels
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# start
"labels_start": datasets.Value(dtype="int32"),
# stop
"labels_stop": datasets.Value(dtype="int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The CAGE dataset requires reference genome, coordinate
csv file,and npy files to be saved.
"""
# Manually download the reference genome since there are difficulties when
# streaming
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(
"cage_prediction/sequences_coordinates.csv"
)
train_file_dict = {}
for train_key, train_file in self.generate_npz_filenames(
"train", self.NUM_TRAIN, folder="cage_prediction/targets_subset"
):
train_file_dict[train_key] = dl_manager.download(train_file)
test_file_dict = {}
for test_key, test_file in self.generate_npz_filenames(
"test", self.NUM_TEST, folder="cage_prediction/targets_subset"
):
test_file_dict[test_key] = dl_manager.download(test_file)
valid_file_dict = {}
for valid_key, valid_file in self.generate_npz_filenames(
"valid", self.NUM_VALID, folder="cage_prediction/targets_subset"
):
valid_file_dict[valid_key] = dl_manager.download(valid_file)
# convert file list to a dict keyed by target number
self.target_files_by_split["train"] = train_file_dict
self.target_files_by_split["test"] = test_file_dict
self.target_files_by_split["validation"] = valid_file_dict
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"handler": self, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"handler": self, "split": "validation"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"handler": self, "split": "test"}
),
]
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct
sequence length and standardized before returning.
"""
target_files = self.target_files_by_split[split]
key = 0
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
for sequential_idx, row in filtered.iterrows():
start, stop = int(row["start"]) - 1, int(
row["stop"]) - 1 # -1 since coords are 1-based
chromosome = row['chrom']
padded_sequence,new_start,new_stop = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
end=stop,
return_new_start_stop=True
)
if self.sequence_length >= self.DEFAULT_LENGTH:
new_start = start
new_stop = stop
# floor npy_idx to the nearest 1000
npz_file = np.load(
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
)
if (
split == "validation"
): # npy files are keyed by ["train", "test", "valid"]
split = "valid"
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
0] # select 0 since there is extra dimension
# subset the targets if sequence length is smaller than 114688 (
# DEFAULT_LENGTH)
if self.sequence_length < self.DEFAULT_LENGTH:
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
targets = targets[idx_diff:-idx_diff]
if padded_sequence:
yield key, {
"labels": targets,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"labels_start": new_start,
"labels_stop": new_stop
}
key += 1
@staticmethod
def generate_npz_filenames(split, total, folder, npz_size=NPZ_SPLIT):
"""
Generates a list of filenames for the npz files stored in the dataset.
Yields a tuple of floored multiple of 1000, filename
Args:
split: split to generate filenames for. Must be in ['train', 'test', 'valid']
due to the naming of the files.
total: total number of npy targets for given split
folder: folder where data is stored.
npz_size: number of npy files per npz. Defaults to 1000 because
this is the number currently used in the dataset.
"""
for i in range(total // npz_size):
yield i * npz_size, f"{folder}/targets-{split}-{i * npz_size}-{i * npz_size + (npz_size - 1)}.npz"
if total % npz_size != 0:
yield (
npz_size * (total // npz_size),
f"{folder}/targets-{split}-"
f"{npz_size * (total // npz_size)}-"
f"{npz_size * (total // npz_size) + (total % npz_size - 1)}.npz",
)
class BulkRnaExpressionHandler(GenomicLRATaskHandler):
"""
Handler for the Bulk RNA Expression task.
"""
DEFAULT_LENGTH = 100000
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
"""
Creates a new handler for the Bulk RNA Expression Prediction Task.
Args:
sequence_length: Length of the sequence around the TSS_CAGE start site
"""
self.reference_genome = None
self.coordinate_csv_file = None
self.labels_csv_file = None
self.sequence_length = sequence_length
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Bulk RNA Expression dataset. Each example
includes a genomic sequence and a list of label values.
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# list of expression values in each tissue
"labels": datasets.Sequence(datasets.Value("float32")),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# position
"position": datasets.Value(dtype="int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
csv file,and label csv file to be saved.
"""
reference_genome_file = self.download_and_extract_gz(
H19_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(
"bulk_rna_expression/gene_coordinates.csv"
)
self.labels_csv_file = dl_manager.download_and_extract(
"bulk_rna_expression/rna_expression_values.csv"
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct sequence
length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinate_csv_file)
labels_df = pd.read_csv(self.labels_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, coordinates_row in coordinates_split_df.iterrows():
start = coordinates_row[
"CAGE_representative_TSS"] - 1 # -1 since coords are 1-based
chromosome = coordinates_row["chrom"]
labels_row = labels_df.loc[idx].values
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=coordinates_row["strand"] == "-",
)
if padded_sequence:
yield key, {
"labels": labels_row,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"position": coordinates_row["CAGE_representative_TSS"]
}
key += 1
class VariantEffectCausalEqtl(GenomicLRATaskHandler):
"""
Handler for the Variant Effect Causal eQTL task.
"""
DEFAULT_LENGTH = 100000
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
"""
Creates a new handler for the Variant Effect Causal eQTL Task.
Args:
sequence_length: Length of the sequence to pad around the SNP position
"""
self.reference_genome = None
self.sequence_length = sequence_length
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Variant Effect Causal eQTL dataset. Each example
includes a genomic sequence with the reference allele as well as the genomic
sequence with the alternative allele, and a binary label.
"""
features = datasets.Features(
{
# DNA sequence
"ref_forward_sequence": datasets.Value("string"),
"alt_forward_sequence": datasets.Value("string"),
# binary label
"label": datasets.Value(dtype="int8"),
# tissue type
"tissue": datasets.Value(dtype="string"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# variant position
"position": datasets.Value(dtype="int32"),
# distance to nearest tss
"distance_to_nearest_tss": datasets.Value(dtype="int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The variant effect prediction dataset requires the reference hg38 genome and
coordinates_labels_csv_file to be saved.
"""
# Manually download the reference genome since there are difficulties
# when streaming
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
f"variant_effect_causal_eqtl/All_Tissues.csv"
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples each with ref/alt allele
and corresponding binary label. The sequences are extended to
the desired sequence length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, row in coordinates_split_df.iterrows():
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
alt_allele = row["ALT"]
label = row["label"]
tissue = row['tissue']
chromosome = row["CHROM"]
distance = int(row["distance_to_nearest_TSS"])
# get reference forward sequence
ref_forward = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=False,
)
# only if a valid sequence returned
if ref_forward:
# Mutate sequence with the alt allele at the SNP position,
# which is always centered in the string returned from pad_sequence
alt_forward = list(ref_forward)
alt_forward[self.sequence_length // 2] = alt_allele
alt_forward = "".join(alt_forward)
yield key, {
"label": label,
"tissue": tissue,
"chromosome": re.sub("chr", "", chromosome),
"ref_forward_sequence": standardize_sequence(ref_forward),
"alt_forward_sequence": standardize_sequence(alt_forward),
"distance_to_nearest_tss": distance,
"position": row["POS"]
}
key += 1
class VariantEffectPathogenicHandler(GenomicLRATaskHandler):
"""
Handler for the Variant Effect Pathogenic Prediction tasks.
"""
DEFAULT_LENGTH = 100000
def __init__(self, sequence_length=DEFAULT_LENGTH, task_name=None, subset=False,
**kwargs):
"""
Creates a new handler for the Variant Effect Pathogenic Tasks.
Args:
sequence_length: Length of the sequence to pad around the SNP position
subset: Whether to return a pre-determined subset of the data.
"""
self.sequence_length = sequence_length
if task_name == 'variant_effect_pathogenic_clinvar':
self.data_file_name = "variant_effect_pathogenic/vep_pathogenic_coding.csv"
elif task_name == 'variant_effect_pathogenic_omim':
self.data_file_name = "variant_effect_pathogenic/" \
"vep_pathogenic_non_coding_subset.csv" \
if subset else "variant_effect_pathogenic/vep_pathogenic_non_coding.csv"
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Variant Effect Pathogenic datasets. Each example
includes a genomic sequence with the reference allele as well as the genomic
sequence with the alternative allele, and a binary label.
"""
features = datasets.Features(
{
# DNA sequence
"ref_forward_sequence": datasets.Value("string"),
"alt_forward_sequence": datasets.Value("string"),
# binary label
"label": datasets.Value(dtype="int8"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# position
"position": datasets.Value(dtype="int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The variant effect prediction datasets require the reference hg38 genome and
coordinates_labels_csv_file to be saved.
"""
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
self.data_file_name)
if 'non_coding' in self.data_file_name:
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"handler": self, "split": "test"}
), ]
else:
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples each with ref/alt allele
and corresponding binary label. The sequences are extended to
the desired sequence length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, row in coordinates_split_df.iterrows():
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
alt_allele = row["ALT"]
label = row["INT_LABEL"]
chromosome = row["CHROM"]
# get reference forward sequence
ref_forward = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=False,
)
# only if a valid sequence returned
if ref_forward:
# Mutate sequence with the alt allele at the SNP position,
# which is always centered in the string returned from pad_sequence
alt_forward = list(ref_forward)
alt_forward[self.sequence_length // 2] = alt_allele
alt_forward = "".join(alt_forward)
yield key, {
"label": label,
"chromosome": re.sub("chr", "", chromosome),
"ref_forward_sequence": standardize_sequence(ref_forward),
"alt_forward_sequence": standardize_sequence(alt_forward),
"position": row['POS']
}
key += 1
class ChromatinFeaturesHandler(GenomicLRATaskHandler):
"""
Handler for the histone marks and DNA accessibility tasks also referred to
collectively as Chromatin features.
"""
DEFAULT_LENGTH = 100000
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
**kwargs):
"""
Creates a new handler for the Deep Sea Histone and DNase tasks.
Args:
sequence_length: Length of the sequence around and including the
annotated 200bp bin
subset: Whether to return a pre-determined subset of the entire dataset.
"""
self.sequence_length = sequence_length
if sequence_length < 200:
raise ValueError(
'Sequence length for this task must be greater or equal to 200 bp')
if 'histone' in task_name:
self.label_name = 'HISTONES'
elif 'dna' in task_name:
self.label_name = 'DNASE'
self.data_file_name = "chromatin_features/histones_and_dnase_subset.csv" if \
subset else "chromatin_features/histones_and_dnase.csv"
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the histone marks and dna accessibility datasets.
Each example includes a genomic sequence and a list of label values.
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# list of binary chromatin marks
"labels": datasets.Sequence(datasets.Value("int8")),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# starting position in genome which corresponds to label
"label_start": datasets.Value(dtype="int32"),
# end position in genome which corresponds to label
"label_stop": datasets.Value(dtype="int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The histone marks and dna accessibility datasets require the reference hg19
genome and coordinate csv file to be saved.
"""
reference_genome_file = self.download_and_extract_gz(
H19_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(self.data_file_name)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct sequence
length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinate_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, coordinates_row in coordinates_split_df.iterrows():
start = coordinates_row['POS'] - 1 # -1 since saved coords are 1-based
chromosome = coordinates_row["CHROM"]
# literal eval used since lists are saved as strings in csv
labels_row = literal_eval(coordinates_row[self.label_name])
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
)
if padded_sequence:
yield key, {
"labels": labels_row,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"label_start": coordinates_row['POS']-100,
"label_stop": coordinates_row['POS'] + 99,
}
key += 1
class RegulatoryElementHandler(GenomicLRATaskHandler):
"""
Handler for the Regulatory Element Prediction tasks.
"""
DEFAULT_LENGTH = 100000
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
**kwargs):
"""
Creates a new handler for the Regulatory Element Prediction tasks.
Args:
sequence_length: Length of the sequence around the element/non-element
subset: Whether to return a pre-determined subset of the entire dataset.
"""
if sequence_length < 200:
raise ValueError(
'Sequence length for this task must be greater or equal to 200 bp')
self.sequence_length = sequence_length
if 'promoter' in task_name:
self.data_file_name = 'regulatory_elements/promoter_dataset'
elif 'enhancer' in task_name:
self.data_file_name = 'regulatory_elements/enhancer_dataset'
if subset:
self.data_file_name += '_subset.csv'
else:
self.data_file_name += '.csv'
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Regulatory Element Prediction Tasks.
Each example includes a genomic sequence and a label.
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# label corresponding to whether the sequence has
# the regulatory element of interest or not
"labels": datasets.Value("int8"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# start
"label_start": datasets.Value(dtype="int32"),
# stop
"label_stop": datasets.Value(dtype="int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
"""
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(
self.data_file_name
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding label. The sequences are padded to the correct sequence
length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinate_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for _, coordinates_row in coordinates_split_df.iterrows():
start = coordinates_row["START"] - 1 # -1 since vcf coords are 1-based
end = coordinates_row["STOP"] - 1 # -1 since vcf coords are 1-based
chromosome = coordinates_row["CHROM"]
label = coordinates_row['label']
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
end=end,
sequence_length=self.sequence_length,
)
if padded_sequence:
yield key, {
"labels": label,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"label_start": coordinates_row["START"],
"label_stop": coordinates_row["STOP"]
}
key += 1
"""
----------------------------------------------------------------------------------------
Dataset loader:
----------------------------------------------------------------------------------------
"""
_DESCRIPTION = """
Dataset for benchmark of genomic deep learning models.
"""
_TASK_HANDLERS = {
"cage_prediction": CagePredictionHandler,
"bulk_rna_expression": BulkRnaExpressionHandler,
"variant_effect_causal_eqtl": VariantEffectCausalEqtl,
"variant_effect_pathogenic_clinvar": VariantEffectPathogenicHandler,
"variant_effect_pathogenic_omim": VariantEffectPathogenicHandler,
"chromatin_features_histone_marks": ChromatinFeaturesHandler,
"chromatin_features_dna_accessibility": ChromatinFeaturesHandler,
"regulatory_element_promoter": RegulatoryElementHandler,
"regulatory_element_enhancer": RegulatoryElementHandler,
}
# define dataset configs
class GenomicsLRAConfig(datasets.BuilderConfig):
"""
BuilderConfig.
"""
def __init__(self, *args, task_name: str, **kwargs): # type: ignore
"""BuilderConfig for the location tasks dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__()
self.handler = _TASK_HANDLERS[task_name](task_name=task_name, **kwargs)
# DatasetBuilder
class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
"""
Tasks to annotate human genome.
"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = GenomicsLRAConfig
def _info(self) -> DatasetInfo:
return self.config.handler.get_info(description=_DESCRIPTION)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Downloads data files and organizes it into train/test/val splits
"""
return self.config.handler.split_generators(dl_manager, self._cache_dir_root)
def _generate_examples(self, handler, split):
"""
Read data files and create examples(yield)
Args:
handler: The handler for the current task
split: A string in ['train', 'test', 'valid']
"""
yield from handler.generate_examples(split)
"""
----------------------------------------------------------------------------------------
Global Utils:
----------------------------------------------------------------------------------------
"""
def standardize_sequence(sequence: str):
"""
Standardizes the sequence by replacing all unknown characters with N and
converting to all uppercase.
Args:
sequence: genomic sequence to standardize
"""
pattern = "[^ATCG]"
# all characters to upper case
sequence = sequence.upper()
# replace all characters that are not A,T,C,G with N
sequence = re.sub(pattern, "N", sequence)
return sequence
def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=False,
return_new_start_stop=False):
"""
Extends a given sequence to length sequence_length. If
padding to the given length is outside the gene, returns
None.
Args:
chromosome: Chromosome from pyfaidx extracted Fasta.
start: Start index of original sequence.
sequence_length: Desired sequence length. If sequence length is odd, the
remainder is added to the end of the sequence.
end: End index of original sequence. If no end is specified, it creates a
centered sequence around the start index.
negative_strand: If negative_strand, returns the reverse compliment of the
sequence
"""
if end:
pad = (sequence_length - (end - start)) // 2
start = start - pad
end = end + pad + (sequence_length % 2)
else:
pad = sequence_length // 2
end = start + pad + (sequence_length % 2)
start = start - pad
if start < 0 or end >= len(chromosome):
return
if negative_strand:
if return_new_start_stop:
return chromosome[start:end].reverse.complement.seq ,start, end
return chromosome[start:end].reverse.complement.seq
if return_new_start_stop:
return chromosome[start:end].seq , start, end
return chromosome[start:end].seq