File size: 37,992 Bytes
631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 634eabc ca412e9 634eabc 631a7ef ca412e9 631a7ef 07eece4 631a7ef 07eece4 631a7ef 07eece4 631a7ef 07eece4 631a7ef ca412e9 631a7ef ca412e9 634eabc 631a7ef 1575e22 631a7ef 634eabc 631a7ef 4504d2d 631a7ef ca412e9 631a7ef ca412e9 634eabc 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 631a7ef 561af90 631a7ef ca412e9 631a7ef ca412e9 631a7ef ca412e9 cc38ba3 ca412e9 cc38ba3 ca412e9 631a7ef a2e188f ca412e9 4619699 ca412e9 634eabc ca412e9 634eabc ca412e9 634eabc ca412e9 634eabc ca412e9 634eabc ca412e9 a2e188f ca412e9 a2e188f ca412e9 a2e188f ca412e9 a2e188f ca412e9 a2e188f ca412e9 a2e188f ca412e9 a2e188f 634eabc a2e188f ca412e9 a2e188f 634eabc a2e188f 634eabc a2e188f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
import gzip
import os
import shutil
import urllib
from pathlib import Path
from typing import List
from tqdm import tqdm
from ast import literal_eval
import re
import datasets
import numpy as np
import pandas as pd
from datasets import DatasetInfo
from pyfaidx import Fasta
from abc import ABC, abstractmethod
"""
----------------------------------------------------------------------------------------
Reference Genome URLS:
----------------------------------------------------------------------------------------
"""
H38_REFERENCE_GENOME_URL = (
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
)
H19_REFERENCE_GENOME_URL = (
"https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/" "hg19.fa.gz"
)
"""
----------------------------------------------------------------------------------------
Task Specific Handlers:
----------------------------------------------------------------------------------------
"""
class GenomicLRATaskHandler(ABC):
"""
Abstract method for the Genomic LRA task handlers.
"""
@abstractmethod
def __init__(self, **kwargs):
pass
@abstractmethod
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the task
"""
pass
def split_generators(
self, dl_manager, cache_dir_root
) -> List[datasets.SplitGenerator]:
"""
Downloads required files using dl_manager and separates them by split.
"""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"handler": self, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
),
]
@abstractmethod
def generate_examples(self, split):
"""
A generator that yields examples for the specified split.
"""
pass
@staticmethod
def hook(t):
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks just transferred [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
def download_and_extract_gz(self, file_url, cache_dir_root):
"""
Downloads and extracts a gz file into the given cache directory. Returns the
full file path of the extracted gz file.
Args:
file_url: url of the gz file to be downloaded and extracted.
cache_dir_root: Directory to extract file into.
"""
file_fname = Path(file_url).stem
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)
if not os.path.exists(file_complete_path):
if not os.path.exists(file_complete_path + ".gz"):
with tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
miniters=1,
desc=file_url.split("/")[-1],
) as t:
urllib.request.urlretrieve(
file_url, file_complete_path + ".gz", reporthook=self.hook(t)
)
with gzip.open(file_complete_path + ".gz", "rb") as file_in:
with open(file_complete_path, "wb") as file_out:
shutil.copyfileobj(file_in, file_out)
return file_complete_path
class CagePredictionHandler(GenomicLRATaskHandler):
"""
Handler for the CAGE prediction task.
"""
NUM_TRAIN = 33891
NUM_TEST = 1922
NUM_VALID = 2195
DEFAULT_LENGTH = 114688 # 896 x 128bp
TARGET_SHAPE = (
896,
50,
) # 50 is a subset of CAGE tracks from the original enformer dataset
NPZ_SPLIT = 1000 # number of files per npz file.
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
"""
Creates a new handler for the CAGE task.
Args:
sequence_length: allows for increasing sequence context. Sequence length
must be an even multiple of 128 to align with binned labels. Note:
increasing sequence length may decrease the number of usable samples.
"""
self.reference_genome = None
self.coordinate_csv_file = None
self.target_files_by_split = {}
assert (sequence_length // 128) % 2 == 0, (
f"Requested sequence length must be an even multuple of 128 to align "
f"with the binned labels."
)
self.sequence_length = sequence_length
if self.sequence_length < self.DEFAULT_LENGTH:
self.TARGET_SHAPE = (self.sequence_length // 128, 50)
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the CAGE dataset. Each example
includes a genomic sequence and a 2D array of labels
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# array of sequence length x num_labels
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# start
"labels_start": datasets.Value(dtype="int32"),
# stop
"labels_stop": datasets.Value(dtype="int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The CAGE dataset requires reference genome, coordinate
csv file,and npy files to be saved.
"""
# Manually download the reference genome since there are difficulties when
# streaming
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(
"cage_prediction/sequences_coordinates.csv"
)
train_file_dict = {}
for train_key, train_file in self.generate_npz_filenames(
"train", self.NUM_TRAIN, folder="cage_prediction/targets_subset"
):
train_file_dict[train_key] = dl_manager.download(train_file)
test_file_dict = {}
for test_key, test_file in self.generate_npz_filenames(
"test", self.NUM_TEST, folder="cage_prediction/targets_subset"
):
test_file_dict[test_key] = dl_manager.download(test_file)
valid_file_dict = {}
for valid_key, valid_file in self.generate_npz_filenames(
"valid", self.NUM_VALID, folder="cage_prediction/targets_subset"
):
valid_file_dict[valid_key] = dl_manager.download(valid_file)
# convert file list to a dict keyed by target number
self.target_files_by_split["train"] = train_file_dict
self.target_files_by_split["test"] = test_file_dict
self.target_files_by_split["validation"] = valid_file_dict
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"handler": self, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"handler": self, "split": "validation"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"handler": self, "split": "test"}
),
]
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct
sequence length and standardized before returning.
"""
target_files = self.target_files_by_split[split]
key = 0
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
for sequential_idx, row in filtered.iterrows():
start, stop = int(row["start"]) - 1, int(
row["stop"]) - 1 # -1 since coords are 1-based
chromosome = row['chrom']
padded_sequence,new_start,new_stop = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
end=stop,
return_new_start_stop=True
)
if self.sequence_length >= self.DEFAULT_LENGTH:
new_start = start
new_stop = stop
# floor npy_idx to the nearest 1000
npz_file = np.load(
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
)
if (
split == "validation"
): # npy files are keyed by ["train", "test", "valid"]
split = "valid"
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
0] # select 0 since there is extra dimension
# subset the targets if sequence length is smaller than 114688 (
# DEFAULT_LENGTH)
if self.sequence_length < self.DEFAULT_LENGTH:
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
targets = targets[idx_diff:-idx_diff]
if padded_sequence:
yield key, {
"labels": targets,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"labels_start": new_start,
"labels_stop": new_stop
}
key += 1
@staticmethod
def generate_npz_filenames(split, total, folder, npz_size=NPZ_SPLIT):
"""
Generates a list of filenames for the npz files stored in the dataset.
Yields a tuple of floored multiple of 1000, filename
Args:
split: split to generate filenames for. Must be in ['train', 'test', 'valid']
due to the naming of the files.
total: total number of npy targets for given split
folder: folder where data is stored.
npz_size: number of npy files per npz. Defaults to 1000 because
this is the number currently used in the dataset.
"""
for i in range(total // npz_size):
yield i * npz_size, f"{folder}/targets-{split}-{i * npz_size}-{i * npz_size + (npz_size - 1)}.npz"
if total % npz_size != 0:
yield (
npz_size * (total // npz_size),
f"{folder}/targets-{split}-"
f"{npz_size * (total // npz_size)}-"
f"{npz_size * (total // npz_size) + (total % npz_size - 1)}.npz",
)
class BulkRnaExpressionHandler(GenomicLRATaskHandler):
"""
Handler for the Bulk RNA Expression task.
"""
DEFAULT_LENGTH = 100000
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
"""
Creates a new handler for the Bulk RNA Expression Prediction Task.
Args:
sequence_length: Length of the sequence around the TSS_CAGE start site
"""
self.reference_genome = None
self.coordinate_csv_file = None
self.labels_csv_file = None
self.sequence_length = sequence_length
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Bulk RNA Expression dataset. Each example
includes a genomic sequence and a list of label values.
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# list of expression values in each tissue
"labels": datasets.Sequence(datasets.Value("float32")),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# position
"position": datasets.Value(dtype="int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
csv file,and label csv file to be saved.
"""
reference_genome_file = self.download_and_extract_gz(
H19_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(
"bulk_rna_expression/gene_coordinates.csv"
)
self.labels_csv_file = dl_manager.download_and_extract(
"bulk_rna_expression/rna_expression_values.csv"
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct sequence
length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinate_csv_file)
labels_df = pd.read_csv(self.labels_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, coordinates_row in coordinates_split_df.iterrows():
start = coordinates_row[
"CAGE_representative_TSS"] - 1 # -1 since coords are 1-based
chromosome = coordinates_row["chrom"]
labels_row = labels_df.loc[idx].values
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=coordinates_row["strand"] == "-",
)
if padded_sequence:
yield key, {
"labels": labels_row,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"position": coordinates_row["CAGE_representative_TSS"]
}
key += 1
class VariantEffectCausalEqtl(GenomicLRATaskHandler):
"""
Handler for the Variant Effect Causal eQTL task.
"""
DEFAULT_LENGTH = 100000
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
"""
Creates a new handler for the Variant Effect Causal eQTL Task.
Args:
sequence_length: Length of the sequence to pad around the SNP position
"""
self.reference_genome = None
self.sequence_length = sequence_length
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Variant Effect Causal eQTL dataset. Each example
includes a genomic sequence with the reference allele as well as the genomic
sequence with the alternative allele, and a binary label.
"""
features = datasets.Features(
{
# DNA sequence
"ref_forward_sequence": datasets.Value("string"),
"alt_forward_sequence": datasets.Value("string"),
# binary label
"label": datasets.Value(dtype="int8"),
# tissue type
"tissue": datasets.Value(dtype="string"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# variant position
"position": datasets.Value(dtype="int32"),
# distance to nearest tss
"distance_to_nearest_tss": datasets.Value(dtype="int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The variant effect prediction dataset requires the reference hg38 genome and
coordinates_labels_csv_file to be saved.
"""
# Manually download the reference genome since there are difficulties
# when streaming
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
f"variant_effect_causal_eqtl/All_Tissues.csv"
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples each with ref/alt allele
and corresponding binary label. The sequences are extended to
the desired sequence length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, row in coordinates_split_df.iterrows():
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
alt_allele = row["ALT"]
label = row["label"]
tissue = row['tissue']
chromosome = row["CHROM"]
distance = int(row["distance_to_nearest_TSS"])
# get reference forward sequence
ref_forward = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=False,
)
# only if a valid sequence returned
if ref_forward:
# Mutate sequence with the alt allele at the SNP position,
# which is always centered in the string returned from pad_sequence
alt_forward = list(ref_forward)
alt_forward[self.sequence_length // 2] = alt_allele
alt_forward = "".join(alt_forward)
yield key, {
"label": label,
"tissue": tissue,
"chromosome": re.sub("chr", "", chromosome),
"ref_forward_sequence": standardize_sequence(ref_forward),
"alt_forward_sequence": standardize_sequence(alt_forward),
"distance_to_nearest_tss": distance,
"position": row["POS"]
}
key += 1
class VariantEffectPathogenicHandler(GenomicLRATaskHandler):
"""
Handler for the Variant Effect Pathogenic Prediction tasks.
"""
DEFAULT_LENGTH = 100000
def __init__(self, sequence_length=DEFAULT_LENGTH, task_name=None, subset=False,
**kwargs):
"""
Creates a new handler for the Variant Effect Pathogenic Tasks.
Args:
sequence_length: Length of the sequence to pad around the SNP position
subset: Whether to return a pre-determined subset of the data.
"""
self.sequence_length = sequence_length
if task_name == 'variant_effect_pathogenic_clinvar':
self.data_file_name = "variant_effect_pathogenic/vep_pathogenic_coding.csv"
elif task_name == 'variant_effect_pathogenic_omim':
self.data_file_name = "variant_effect_pathogenic/" \
"vep_pathogenic_non_coding_subset.csv" \
if subset else "variant_effect_pathogenic/vep_pathogenic_non_coding.csv"
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Variant Effect Pathogenic datasets. Each example
includes a genomic sequence with the reference allele as well as the genomic
sequence with the alternative allele, and a binary label.
"""
features = datasets.Features(
{
# DNA sequence
"ref_forward_sequence": datasets.Value("string"),
"alt_forward_sequence": datasets.Value("string"),
# binary label
"label": datasets.Value(dtype="int8"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# position
"position": datasets.Value(dtype="int32")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The variant effect prediction datasets require the reference hg38 genome and
coordinates_labels_csv_file to be saved.
"""
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
self.data_file_name)
if 'non_coding' in self.data_file_name:
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"handler": self, "split": "test"}
), ]
else:
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples each with ref/alt allele
and corresponding binary label. The sequences are extended to
the desired sequence length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, row in coordinates_split_df.iterrows():
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
alt_allele = row["ALT"]
label = row["INT_LABEL"]
chromosome = row["CHROM"]
# get reference forward sequence
ref_forward = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=False,
)
# only if a valid sequence returned
if ref_forward:
# Mutate sequence with the alt allele at the SNP position,
# which is always centered in the string returned from pad_sequence
alt_forward = list(ref_forward)
alt_forward[self.sequence_length // 2] = alt_allele
alt_forward = "".join(alt_forward)
yield key, {
"label": label,
"chromosome": re.sub("chr", "", chromosome),
"ref_forward_sequence": standardize_sequence(ref_forward),
"alt_forward_sequence": standardize_sequence(alt_forward),
"position": row['POS']
}
key += 1
class ChromatinFeaturesHandler(GenomicLRATaskHandler):
"""
Handler for the histone marks and DNA accessibility tasks also referred to
collectively as Chromatin features.
"""
DEFAULT_LENGTH = 100000
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
**kwargs):
"""
Creates a new handler for the Deep Sea Histone and DNase tasks.
Args:
sequence_length: Length of the sequence around and including the
annotated 200bp bin
subset: Whether to return a pre-determined subset of the entire dataset.
"""
self.sequence_length = sequence_length
if sequence_length < 200:
raise ValueError(
'Sequence length for this task must be greater or equal to 200 bp')
if 'histone' in task_name:
self.label_name = 'HISTONES'
elif 'dna' in task_name:
self.label_name = 'DNASE'
self.data_file_name = "chromatin_features/histones_and_dnase_subset.csv" if \
subset else "chromatin_features/histones_and_dnase.csv"
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the histone marks and dna accessibility datasets.
Each example includes a genomic sequence and a list of label values.
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# list of binary chromatin marks
"labels": datasets.Sequence(datasets.Value("int8")),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# starting position in genome which corresponds to label
"label_start": datasets.Value(dtype="int32"),
# end position in genome which corresponds to label
"label_stop": datasets.Value(dtype="int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The histone marks and dna accessibility datasets require the reference hg19
genome and coordinate csv file to be saved.
"""
reference_genome_file = self.download_and_extract_gz(
H19_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(self.data_file_name)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct sequence
length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinate_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for idx, coordinates_row in coordinates_split_df.iterrows():
start = coordinates_row['POS'] - 1 # -1 since saved coords are 1-based
chromosome = coordinates_row["CHROM"]
# literal eval used since lists are saved as strings in csv
labels_row = literal_eval(coordinates_row[self.label_name])
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
)
if padded_sequence:
yield key, {
"labels": labels_row,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"label_start": coordinates_row['POS']-100,
"label_stop": coordinates_row['POS'] + 99,
}
key += 1
class RegulatoryElementHandler(GenomicLRATaskHandler):
"""
Handler for the Regulatory Element Prediction tasks.
"""
DEFAULT_LENGTH = 100000
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
**kwargs):
"""
Creates a new handler for the Regulatory Element Prediction tasks.
Args:
sequence_length: Length of the sequence around the element/non-element
subset: Whether to return a pre-determined subset of the entire dataset.
"""
if sequence_length < 200:
raise ValueError(
'Sequence length for this task must be greater or equal to 200 bp')
self.sequence_length = sequence_length
if 'promoter' in task_name:
self.data_file_name = 'regulatory_elements/promoter_dataset'
elif 'enhancer' in task_name:
self.data_file_name = 'regulatory_elements/enhancer_dataset'
if subset:
self.data_file_name += '_subset.csv'
else:
self.data_file_name += '.csv'
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the Regulatory Element Prediction Tasks.
Each example includes a genomic sequence and a label.
"""
features = datasets.Features(
{
# DNA sequence
"sequence": datasets.Value("string"),
# label corresponding to whether the sequence has
# the regulatory element of interest or not
"labels": datasets.Value("int8"),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
# start
"label_start": datasets.Value(dtype="int32"),
# stop
"label_stop": datasets.Value(dtype="int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=description,
# This defines the different columns of the dataset and their types
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
"""
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.coordinate_csv_file = dl_manager.download_and_extract(
self.data_file_name
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding label. The sequences are padded to the correct sequence
length and standardized before returning.
"""
coordinates_df = pd.read_csv(self.coordinate_csv_file)
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
key = 0
for _, coordinates_row in coordinates_split_df.iterrows():
start = coordinates_row["START"] - 1 # -1 since vcf coords are 1-based
end = coordinates_row["STOP"] - 1 # -1 since vcf coords are 1-based
chromosome = coordinates_row["CHROM"]
label = coordinates_row['label']
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
end=end,
sequence_length=self.sequence_length,
)
if padded_sequence:
yield key, {
"labels": label,
"sequence": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"label_start": coordinates_row["START"],
"label_stop": coordinates_row["STOP"]
}
key += 1
"""
----------------------------------------------------------------------------------------
Dataset loader:
----------------------------------------------------------------------------------------
"""
_DESCRIPTION = """
Dataset for benchmark of genomic deep learning models.
"""
_TASK_HANDLERS = {
"cage_prediction": CagePredictionHandler,
"bulk_rna_expression": BulkRnaExpressionHandler,
"variant_effect_causal_eqtl": VariantEffectCausalEqtl,
"variant_effect_pathogenic_clinvar": VariantEffectPathogenicHandler,
"variant_effect_pathogenic_omim": VariantEffectPathogenicHandler,
"chromatin_features_histone_marks": ChromatinFeaturesHandler,
"chromatin_features_dna_accessibility": ChromatinFeaturesHandler,
"regulatory_element_promoter": RegulatoryElementHandler,
"regulatory_element_enhancer": RegulatoryElementHandler,
}
# define dataset configs
class GenomicsLRAConfig(datasets.BuilderConfig):
"""
BuilderConfig.
"""
def __init__(self, *args, task_name: str, **kwargs): # type: ignore
"""BuilderConfig for the location tasks dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__()
self.handler = _TASK_HANDLERS[task_name](task_name=task_name, **kwargs)
# DatasetBuilder
class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
"""
Tasks to annotate human genome.
"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = GenomicsLRAConfig
def _info(self) -> DatasetInfo:
return self.config.handler.get_info(description=_DESCRIPTION)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Downloads data files and organizes it into train/test/val splits
"""
return self.config.handler.split_generators(dl_manager, self._cache_dir_root)
def _generate_examples(self, handler, split):
"""
Read data files and create examples(yield)
Args:
handler: The handler for the current task
split: A string in ['train', 'test', 'valid']
"""
yield from handler.generate_examples(split)
"""
----------------------------------------------------------------------------------------
Global Utils:
----------------------------------------------------------------------------------------
"""
def standardize_sequence(sequence: str):
"""
Standardizes the sequence by replacing all unknown characters with N and
converting to all uppercase.
Args:
sequence: genomic sequence to standardize
"""
pattern = "[^ATCG]"
# all characters to upper case
sequence = sequence.upper()
# replace all characters that are not A,T,C,G with N
sequence = re.sub(pattern, "N", sequence)
return sequence
def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=False,
return_new_start_stop=False):
"""
Extends a given sequence to length sequence_length. If
padding to the given length is outside the gene, returns
None.
Args:
chromosome: Chromosome from pyfaidx extracted Fasta.
start: Start index of original sequence.
sequence_length: Desired sequence length. If sequence length is odd, the
remainder is added to the end of the sequence.
end: End index of original sequence. If no end is specified, it creates a
centered sequence around the start index.
negative_strand: If negative_strand, returns the reverse compliment of the
sequence
"""
if end:
pad = (sequence_length - (end - start)) // 2
start = start - pad
end = end + pad + (sequence_length % 2)
else:
pad = sequence_length // 2
end = start + pad + (sequence_length % 2)
start = start - pad
if start < 0 or end >= len(chromosome):
return
if negative_strand:
if return_new_start_stop:
return chromosome[start:end].reverse.complement.seq ,start, end
return chromosome[start:end].reverse.complement.seq
if return_new_start_stop:
return chromosome[start:end].seq , start, end
return chromosome[start:end].seq |