Kaludi/food-category-classification-v2.0
Image Classification
•
Updated
•
138k
•
28
image
imagewidth (px) 200
8.69k
| label
class label 12
classes |
---|---|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
|
0Bread
|
This dataset for project food-category-classification-v2.0 was scraped with the help of a bulk google image downloader.
The dataset has the following fields (also called "features"):
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['Bread', 'Dairy', 'Dessert', 'Egg', 'Fried Food', 'Fruit', 'Meat', 'Noodles', 'Rice', 'Seafood', 'Soup', 'Vegetable'], id=None)"
}
This dataset is split into a train and validation split. The split sizes are as follows:
Split name | Num samples |
---|---|
train | 1200 |
valid | 300 |