tapir-cleaned-116k / README.md
MattiaL's picture
Update README.md
0fb12dd
metadata
license: cc-by-nc-4.0
language:
  - en
tags:
  - instruction-finetuning
pretty_name: Tapir-Cleaned
task_categories:
  - text-generation
size_categories:
  - 100K<n<1M

Dataset Card for Tapir-Cleaned

This is a revised version of the DAISLab dataset of IFTTT rules, which has been thoroughly cleaned, scored, and adjusted for the purpose of instruction-tuning.

Tapir Dataset Summary

Tapir is a subset of the larger DAISLab dataset, which comprises 242,480 recipes extracted from the IFTTT platform.

After a thorough cleaning process that involved the removal of redundant and inconsistent recipes, the refined dataset was condensed to include 116,862 high-quality recipes.

This curated set of instruction data is particularly useful for conducting instruction-tuning exercises for language models, allowing them to more accurately follow instructions and achieve superior performance.

The last version of Tapir includes a correlation score that helps to identify the most appropriate description-rule pairs for instruction tuning. Description-rule pairs with a score greater than 0.75 are deemed good enough and are prioritized for further analysis and tuning.

Supported Tasks and Leaderboards

The Tapir dataset designed for instruction training pretrained language models

Languages

The data in Tapir are mainly in English (BCP-47 en).

Dataset Structure

Data Instances

{
    "instruction":"From the description of a rule: identify the 'trigger', identify the 'action', write a IF 'trigger' THEN 'action' rule.",
    "input":"If lostphone is texted to my phone the volume will turn up to 100 so I can find it.",
    "output":"IF Android SMS New SMS received matches search THEN Android Device Set ringtone volume",
    "score":"0.804322",
    "text": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\nFrom the description of a rule: identify the 'trigger', identify the 'action', write a IF 'trigger' THEN 'action' rule.\n\n### Input:\nIf lostphone is texted to my phone the volume will turn up to 100 so I can find it.\n\n### Response:\nIF Android SMS New SMS received matches search THEN Android Device Set ringtone volume",
}

Data Fields

The data fields are as follows:

  • instruction: describes the task the model should perform.
  • input: context or input for the task. Each of the 116K input is unique.
  • output: the answer taken from the original Tapir Dataset formatted as an IFTTT recipe.
  • score: the correlation score obtained via BertForNextSentencePrediction
  • text: the instruction, input and output formatted with the prompt template used by the authors of Alpaca for fine-tuning their models.

Data Splits

train
tapir 116862

Licensing Information

The dataset is available under the Creative Commons NonCommercial (CC BY-NC 4.0).

Citation Information

@misc{tapir,
  author = {Mattia Limone, Gaetano Cimino, Annunziata Elefante},
  title = {TAPIR: Trigger Action Platform for Information Retrieval},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/MattiaLimone/ifttt_recommendation_system}},
}