|
--- |
|
language: |
|
- en |
|
size_categories: |
|
- 10K<n<100K |
|
configs: |
|
- config_name: chat |
|
default: true |
|
data_files: |
|
- split: train |
|
path: data/train.csv |
|
- split: validation |
|
path: data/valid.csv |
|
- split: test |
|
path: data/test_iid.csv |
|
- split: test_iid |
|
path: data/test_iid.csv |
|
- split: test_geo |
|
path: data/test_geo.csv |
|
- split: test_vis |
|
path: data/test_vis.csv |
|
- split: test_cat |
|
path: data/test_cat.csv |
|
- split: test_web |
|
path: data/test_web.csv |
|
tags: |
|
- image-to-text |
|
- vision |
|
- convAI |
|
task_categories: |
|
- image-to-text |
|
- text-generation |
|
- text2text-generation |
|
- sentence-similarity |
|
pretty_name: weblinx |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
<div align="center"> |
|
<h1 style="margin-bottom: 0.5em;">WebLINX: Real-World Website Navigation with Multi-Turn Dialogue</h1> |
|
<em>Xing Han Lù*, Zdeněk Kasner*, Siva Reddy</em> |
|
</div> |
|
|
|
<div style="margin-bottom: 2em"></div> |
|
|
|
|
|
| [**💾Code**](https://github.com/McGill-NLP/WebLINX) | [**📄Paper**](https://arxiv.org/abs/2402.05930) | [**🌐Website**](https://mcgill-nlp.github.io/weblinx) | [**📓Colab**](https://colab.research.google.com/github/McGill-NLP/weblinx/blob/main/examples/WebLINX_Colab_Notebook.ipynb) | |
|
| :--: | :--: | :--: | :--: | |
|
| [**🤖Models**](https://huggingface.co/collections/McGill-NLP/weblinx-models-65c57d4afeeb282d1dcf8434) | [**💻Explorer**](https://huggingface.co/spaces/McGill-NLP/weblinx-explorer) | [**🐦Tweets**](https://twitter.com/sivareddyg/status/1755799365031965140) | [**🏆Leaderboard**](https://paperswithcode.com/sota/conversational-web-navigation-on-weblinx) | |
|
|
|
|
|
<video width="100%" controls autoplay muted loop> |
|
<source src="https://huggingface.co/datasets/McGill-NLP/WebLINX/resolve/main/WeblinxWebsiteDemo.mp4?download=false" type="video/mp4"> |
|
Your browser does not support the video tag. |
|
</video> |
|
|
|
|
|
## Quickstart |
|
|
|
To get started, simply install `datasets` with `pip install datasets` and load the chat data splits: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from huggingface_hub import snapshot_download |
|
|
|
# Load the validation split |
|
valid = load_dataset("McGill-NLP/weblinx", split="validation") |
|
|
|
# Download the input templates and use the LLaMA one |
|
snapshot_download( |
|
"McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/*", local_dir="." |
|
) |
|
with open('templates/llama.txt') as f: |
|
template = f.read() |
|
|
|
# To get the input text, simply pass a turn from the valid split to the template |
|
turn = valid[0] |
|
turn_text = template.format(**turn) |
|
``` |
|
|
|
You can now use `turn_text` as an input to LLaMA-style models. For example, you can use Sheared-LLaMA: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
action_model = pipeline( |
|
model="McGill-NLP/Sheared-LLaMA-2.7B-weblinx", device=0, torch_dtype='auto' |
|
) |
|
out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True) |
|
pred = out[0]['generated_text'] |
|
|
|
print("Ref:", turn["action"]) |
|
print("Pred:", pred) |
|
``` |
|
|
|
## Raw Data |
|
|
|
To use the raw data, you will need to use the `huggingface_hub`: |
|
|
|
```python |
|
from huggingface_hub import snapshot_download |
|
|
|
# If you want to download the complete dataset (may take a while!) |
|
snapshot_download(repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data") |
|
|
|
# You can download specific demos, for example |
|
demo_names = ['saabwsg', 'ygprzve', 'iqaazif'] # 3 random demo from valid |
|
patterns = [f"demonstrations/{name}/*" for name in demo_names] |
|
snapshot_download( |
|
repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data", allow_patterns=patterns |
|
) |
|
``` |
|
|
|
For more information on how to use this data using our [official library](https://github.com/McGill-NLP/WebLINX), please refer to the [WebLINX documentation](https://mcgill-nlp.github.io/weblinx/docs). |
|
|
|
## Reranking Data |
|
|
|
You can also access the data processed for reranking tasks. To do that: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
path = 'McGill-NLP/WebLINX' |
|
|
|
# validation split: |
|
valid = load_dataset(path=path, name='reranking', split='validation') |
|
# test-iid split |
|
test_iid = load_dataset(path, 'reranking', split='test_iid') |
|
# other options: test_cat, test_geo, test_vis, test_web |
|
|
|
print("Query:") |
|
print(valid[0]['query']) |
|
|
|
print("\nPositive:") |
|
print(valid[0]['positives'][0]) |
|
|
|
print("\nNegative #1:") |
|
print(valid[0]['negatives'][0]) |
|
|
|
print("\nNegative #2:") |
|
print(valid[0]['negatives'][1]) |
|
``` |
|
|
|
## License and Terms of Use |
|
|
|
License: The Dataset is made available under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). |
|
|
|
By downloading this Dataset, you agree to comply with the following terms of use: |
|
- Restrictions: You agree not to use the Dataset in any way that is unlawful or would infringe upon the rights of others. |
|
- Acknowledgment: By using the Dataset, you acknowledge that the Dataset may contain data derived from third-party sources, and you agree to abide by any additional terms and conditions that may apply to such third-party data. |
|
- Fair Use Declaration: The Dataset may be used for research if it constitutes "fair use" under copyright laws within your jurisdiction. You are responsible for ensuring your use complies with applicable laws. |
|
|
|
Derivatives must also include the terms of use above. |
|
|
|
## Citation |
|
|
|
If you use our dataset, please cite our work as follows: |
|
|
|
```bibtex |
|
@misc{lu-2024-weblinx, |
|
title={WebLINX: Real-World Website Navigation with Multi-Turn Dialogue}, |
|
author={Xing Han Lù and Zdeněk Kasner and Siva Reddy}, |
|
year={2024}, |
|
eprint={2402.05930}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |