text
stringlengths
33
722k
The atrioventricular node is a collection of specialized cells that forms the beginning of an elaborate system of conducting tissue, the atrioventricular bundle, which extends the excitatory impulse to all ventricular musculature.
The atrioventricular bundle is a direct continuation of the atrioventricular node (Fig. 3.83A). It follows along the lower border of the membranous part of the interventricular septum before splitting into right and left bundles.
The right bundle branch continues on the right side of the interventricular septum toward the apex of the right ventricle. From the septum it enters the septomarginal trabecula to reach the base of the anterior papillary muscle. At this point, it divides and is continuous with the final component of the cardiac conduction system, the subendocardial plexus of ventricular conduction cells or Purkinje fibers. This network of specialized cells spreads throughout the ventricle to supply the ventricular musculature, including the papillary muscles.
The left bundle branch passes to the left side of the muscular interventricular septum and descends to the apex of the left ventricle (Fig. 3.83B). Along its course it gives off branches that eventually become continuous with the subendocardial plexus of conduction cells (Purkinje fibers). As with the right side, this network of specialized cells spreads the excitation impulses throughout the left ventricle.
The autonomic division of the peripheral nervous system is directly responsible for regulating: heart rate, force of each contraction, and cardiac output.
Branches from both the parasympathetic and sympathetic systems contribute to the formation of the cardiac plexus. This plexus consists of a superficial part, inferior to the aortic arch and between it and the pulmonary trunk (Fig. 3.84A), and a deep part, between the aortic arch and the tracheal bifurcation (Fig. 3.84B).
From the cardiac plexus, small branches that are mixed nerves containing both sympathetic and parasympathetic fibers supply the heart. These branches affect nodal tissue and other components of the conduction system, coronary blood vessels, and atrial and ventricular musculature.
Stimulation of the parasympathetic system: decreases heart rate, reduces force of contraction, and constricts the coronary arteries.
The preganglionic parasympathetic fibers reach the heart as cardiac branches from the right and left vagus nerves. They enter the cardiac plexus and synapse in ganglia located either within the plexus or in the walls of the atria.
Stimulation of the sympathetic system: increases heart rate, and increases the force of contraction.
Sympathetic fibers reach the cardiac plexus through the cardiac nerves from the sympathetic trunk. Preganglionic sympathetic fibers from the upper four or five segments of the thoracic spinal cord enter and move through the sympathetic trunk. They synapse in cervical and upper thoracic sympathetic ganglia, and postganglionic fibers proceed as bilateral branches from the sympathetic trunk to the cardiac plexus.
Visceral afferents from the heart are also a component of the cardiac plexus. These fibers pass through the cardiac plexus and return to the central nervous system in the cardiac nerves from the sympathetic trunk and in the vagal cardiac branches.
The afferents associated with the vagal cardiac nerves return to the vagus nerve [X]. They sense alterations in blood pressure and blood chemistry and are therefore primarily concerned with cardiac reflexes.
The afferents associated with the cardiac nerves from the sympathetic trunks return to either the cervical or the thoracic portions of the sympathetic trunk. If they are in the cervical portion of the trunk, they normally descend to the thoracic region, where they reenter the upper four or five thoracic spinal cord segments, along with the afferents from the thoracic region of the sympathetic trunk. Visceral afferents associated with the sympathetic system conduct pain sensation from the heart, which is detected at the cellular level as tissue-damaging events (i.e., cardiac ischemia). This pain is often “referred” to cutaneous regions supplied by the same spinal cord levels (see “In the clinic: Referred pain.” p. 46, and “Case 1,” pp. 244–246).
The pulmonary trunk is contained within the pericardial sac (Fig. 3.85), is covered by the visceral layer of serous pericardium, and is associated with the ascending aorta in a common sheath. It arises from the conus arteriosus of the right ventricle at the opening of the pulmonary trunk slightly anterior to the aortic orifice and ascends, moving posteriorly and to the left, lying initially anterior and then to the left of the ascending aorta. At approximately the level of the intervertebral disc between vertebrae TV and TVI, opposite the left border of the sternum and posterior to the third left costal cartilage, the pulmonary trunk divides into: the right pulmonary artery, which passes to the right, posterior to the ascending aorta and the superior vena cava, to enter the right lung; and the left pulmonary artery, which passes inferiorly to the arch of the aorta and anteriorly to the descending aorta to enter the left lung.
The ascending aorta is contained within the pericardial sac and is covered by a visceral layer of serous pericardium, which also surrounds the pulmonary trunk in a common sheath (Fig. 3.85A).
The origin of the ascending aorta is the aortic orifice at the base of the left ventricle, which is level with the lower edge of the third left costal cartilage, posterior to the left half of the sternum. Moving superiorly, slightly forward and to the right, the ascending aorta continues to the level of the second right costal cartilage. At this point, it enters the superior mediastinum and is then referred to as the arch of the aorta.
Immediately superior to the point where the ascending aorta arises from the left ventricle are three small outward bulges opposite the semilunar cusps of the aortic valve. These are the posterior, right, and left aortic sinuses. The right and left coronary arteries originate from the right and left aortic sinuses, respectively.
The inferior half of the superior vena cava is located within the pericardial sac (Fig. 3.85B). It passes through the fibrous pericardium at approximately the level of the second costal cartilage and enters the right atrium at the lower level of the third costal cartilage. The portion within the pericardial sac is covered with serous pericardium except for a small area on its posterior surface.
After passing through the diaphragm, at approximately the level of vertebra TVIII, the inferior vena cava enters the fibrous pericardium. A short portion of this vessel is within the pericardial sac before entering the right atrium. While within the pericardial sac, it is covered by serous pericardium except for a small portion of its posterior surface (Fig. 3.85B).
A very short segment of each of the pulmonary veins is also within the pericardial sac. These veins, usually two from each lung, pass through the fibrous pericardium and enter the superior region of the left atrium on its posterior surface. In the pericardial sac, all but a portion of the posterior surface of these veins is covered by serous pericardium. In addition, the oblique pericardial sinus is between the right and left pulmonary veins, within the pericardial sac (Fig. 3.85B).
The superior mediastinum is posterior to the manubrium of the sternum and anterior to the bodies of the first four thoracic vertebrae (see Fig. 3.57).
Its superior boundary is an oblique plane passing from the jugular notch upward and posteriorly to the superior border of vertebra TI.
Inferiorly, a transverse plane passing from the sternal angle to the intervertebral disc between vertebra TIV/V separates it from the inferior mediastinum.
Laterally, it is bordered by the mediastinal part of the parietal pleura on either side.
The superior mediastinum is continuous with the neck above and with the inferior mediastinum below.
The major structures found in the superior mediastinum (Figs. 3.86 and 3.87) include the: thymus, right and left brachiocephalic veins, left superior intercostal vein, superior vena cava, arch of the aorta with its three large branches, trachea, esophagus, phrenic nerves, vagus nerves, left recurrent laryngeal branch of the left vagus nerve, thoracic duct, and other small nerves, blood vessels, and lymphatics.
The thymus is the most anterior component of the superior mediastinum, lying immediately posterior to the manubrium of the sternum. It is an asymmetrical, bilobed structure (see Fig. 3.58).
The upper extent of the thymus can reach into the neck as high as the thyroid gland; a lower portion typically extends into the anterior mediastinum over the pericardial sac.
Involved in the early development of the immune system, the thymus is a large structure in the child, begins to atrophy after puberty, and shows considerable size variation in the adult. In the elderly adult, it is barely identifiable as an organ, consisting mostly of fatty tissue that is sometimes arranged as two lobulated fatty structures.
Arteries to the thymus consist of small branches originating from the internal thoracic arteries. Venous drainage is usually into the left brachiocephalic vein and possibly into the internal thoracic veins.
Lymphatic drainage returns to multiple groups of nodes at one or more of the following locations: along the internal thoracic arteries (parasternal); at the tracheal bifurcation (tracheobronchial); and in the root of the neck.
The left and right brachiocephalic veins are located immediately posterior to the thymus. They form on each side at the junction between the internal jugular and subclavian veins (see Fig. 3.86). The left brachiocephalic vein crosses the midline and joins with the right brachiocephalic vein to form the superior vena cava (Fig. 3.88).
The right brachiocephalic vein begins posterior to the medial end of the right clavicle and passes vertically downward, forming the superior vena cava when it is joined by the left brachiocephalic vein. Venous tributaries include the vertebral, first posterior intercostal, and internal thoracic veins. The inferior thyroid and thymic veins may also drain into it.
The left brachiocephalic vein begins posterior to the medial end of the left clavicle. It crosses to the right, moving in a slightly inferior direction, and joins with the right brachiocephalic vein to form the superior vena cava posterior to the lower edge of the right first costal cartilage close to the right sternal border. Venous tributaries include the vertebral, first posterior intercostal, left superior intercostal, inferior thyroid, and internal thoracic veins. It may also receive thymic and pericardial veins. The left brachiocephalic vein crosses the midline posterior to the manubrium in the adult. In infants and children the left brachiocephalic vein rises above the superior border of the manubrium and therefore is less protected.
The left superior intercostal vein receives the second, third, and sometimes the fourth posterior intercostal veins, usually the left bronchial veins, and sometimes the left pericardiacophrenic vein. It passes over the left side of the aortic arch, lateral to the left vagus nerve and medial to the left phrenic nerve, before entering the left brachiocephalic vein (Fig. 3.89). Inferiorly, it may connect with the accessory hemiazygos vein (superior hemiazygos vein).
The vertically oriented superior vena cava begins posterior to the lower edge of the right first costal cartilage, where the right and left brachiocephalic veins join, and terminates at the lower edge of the right third costal cartilage, where it joins the right atrium (see Fig. 3.86).
The lower half of the superior vena cava is within the pericardial sac and is therefore contained in the middle mediastinum.
The superior vena cava receives the azygos vein immediately before entering the pericardial sac and may also receive pericardial and mediastinal veins.
The superior vena cava can be easily visualized forming part of the right superolateral border of the mediastinum on a chest radiograph (see Fig. 3.67A).
Arch of aorta and its branchesThe thoracic portion of the aorta can be divided into ascending aorta, arch of the aorta, and thoracic (descending) aorta. Only the arch of the aorta is in the superior mediastinum. It begins when the ascending aorta emerges from the pericardial sac and courses upward, backward, and to the left as it passes through the superior mediastinum, ending on the left side at vertebral level TIV/V (see Fig. 3.86). Extending as high as the midlevel of the manubrium of the sternum, the arch is initially anterior and finally lateral to the trachea.
Three branches arise from the superior border of the arch of the aorta; at their origins, all three are crossed anteriorly by the left brachiocephalic vein.
The first branchBeginning on the right, the first branch of the arch of the aorta is the brachiocephalic trunk (Fig. 3.90). It is the largest of the three branches and, at its point of origin behind the manubrium of the sternum, is slightly anterior to the other two branches. It ascends slightly posteriorly and to the right. At the level of the upper edge of the right sternoclavicular joint, the brachiocephalic trunk divides into: the right common carotid artery, and the right subclavian artery (see Fig. 3.86).
The arteries mainly supply the right side of the head and neck and the right upper limb, respectively.
Occasionally, the brachiocephalic trunk has a small branch, the thyroid ima artery, which contributes to the vascular supply of the thyroid gland.
The second branchThe second branch of the arch of the aorta is the left common carotid artery (Fig. 3.90). It arises from the arch immediately to the left and slightly posterior to the brachiocephalic trunk and ascends through the superior mediastinum along the left side of the trachea.
The left common carotid artery supplies the left side of the head and neck.
The third branchThe third branch of the arch of the aorta is the left subclavian artery (Fig. 3.90). It arises from the arch of the aorta immediately to the left of, and slightly posterior to, the left common carotid artery and ascends through the superior mediastinum along the left side of the trachea.
The left subclavian artery is the major blood supply to the left upper limb.
The ligamentum arteriosum is also in the superior mediastinum and is important in embryonic circulation, when it is a patent vessel (the ductus arteriosus). It connects the pulmonary trunk with the arch of the aorta and allows blood to bypass the lungs during development (Fig. 3.90). The vessel closes soon after birth and forms the ligamentous connection observed in the adult.
The trachea is a midline structure that is palpable in the jugular notch as it enters the superior mediastinum.
Posterior to it is the esophagus, which is immediately anterior to the vertebral column (Fig. 3.92, and see Figs. 3.86 and 3.87). Significant mobility exists in the vertical positioning of these structures as they pass through the superior mediastinum. Swallowing and breathing cause positional shifts, as may disease and the use of specialized instrumentation.
As the trachea and esophagus pass through the superior mediastinum, they are crossed laterally by the azygos vein on the right side and the arch of the aorta on the left side.
The trachea divides into the right and left main bronchi at, or just inferior to, the transverse plane between the sternal angle and vertebral level TIV/V (Fig. 3.93), whereas the esophagus continues into the posterior mediastinum.
Nerves of the superior mediastinumThe vagus nerves [X] pass through the superior and posterior divisions of the mediastinum on their way to the abdominal cavity. As they pass through the thorax, they provide parasympathetic innervation to the thoracic viscera and carry visceral afferents from the thoracic viscera.
Visceral afferents in the vagus nerves relay information to the central nervous system about normal physiological processes and reflex activities. They do not transmit pain sensation.
The right vagus nerve enters the superior mediastinum and lies between the right brachiocephalic vein and the brachiocephalic trunk. It descends in a posterior direction toward the trachea (Fig. 3.94), crosses the lateral surface of the trachea, and passes posteriorly to the root of the right lung to reach the esophagus. Just before the esophagus, it is crossed by the arch of the azygos vein.
As the right vagus nerve passes through the superior mediastinum, it gives branches to the esophagus, cardiac plexus, and pulmonary plexus.
The left vagus nerve enters the superior mediastinum posterior to the left brachiocephalic vein and between the left common carotid and left subclavian arteries (Fig. 3.95). As it passes into the superior mediastinum, it lies just deep to the mediastinal part of the parietal pleura and crosses the left side of the arch of the aorta. It continues to descend in a posterior direction and passes posterior to the root of the left lung to reach the esophagus in the posterior mediastinum.
As the left vagus nerve passes through the superior mediastinum, it gives branches to the esophagus, the cardiac plexus, and the pulmonary plexus.
The left vagus nerve also gives rise to the left recurrent laryngeal nerve, which arises from it at the inferior margin of the arch of the aorta just lateral to the ligamentum arteriosum. The left recurrent laryngeal nerve passes inferior to the arch of the aorta before ascending on its medial surface. Entering a groove between the trachea and esophagus, the left recurrent laryngeal nerve continues superiorly to enter the neck and terminate in the larynx (Fig. 3.96).
The phrenic nerves arise in the cervical region mainly from the fourth, but also from the third and fifth, cervical spinal cord segments.
The phrenic nerves descend through the thorax to supply motor and sensory innervation to the diaphragm and its associated membranes. As they pass through the thorax, they provide innervation through somatic afferent fibers to the mediastinal pleura, fibrous pericardium, and parietal layer of serous pericardium.
The right phrenic nerve enters the superior mediastinum lateral to the right vagus nerve and lateral and slightly posterior to the beginning of the right brachiocephalic vein (see Fig. 3.94). It continues inferiorly along the right side of this vein and the right side of the superior vena cava.
On entering the middle mediastinum, the right phrenic nerve descends along the right side of the pericardial sac, within the fibrous pericardium, anterior to the root of the right lung. The pericardiacophrenic vessels accompany it through most of its course in the thorax (see Fig. 3.60). It leaves the thorax by passing through the diaphragm with the inferior vena cava.
The left phrenic nerve enters the superior mediastinum in a position similar to the path taken by the right phrenic nerve. It lies lateral to the left vagus nerve and lateral and slightly posterior to the beginning of the left brachiocephalic vein (see Fig. 3.89), and continues to descend across the left lateral surface of the arch of the aorta, passing superficially to the left vagus nerve and the left superior intercostal vein.
On entering the middle mediastinum, the left phrenic nerve follows the left side of the pericardial sac, within the fibrous pericardium, anterior to the root of the left lung, and is accompanied by the pericardiacophrenic vessels (see Fig. 3.60). It leaves the thorax by piercing the diaphragm near the apex of the heart.
Thoracic duct in the superior mediastinumThe thoracic duct, which is the major lymphatic vessel in the body, passes through the posterior portion of the superior mediastinum (see Figs. 3.87 and 3.92). It: enters the superior mediastinum inferiorly, slightly to the left of the midline, having moved to this position just before leaving the posterior mediastinum opposite vertebral level TIV/V; and continues through the superior mediastinum, posterior to the arch of the aorta, and the initial portion of the left subclavian artery, between the esophagus and the left mediastinal part of the parietal pleura.
The posterior mediastinum is posterior to the pericardial sac and diaphragm and anterior to the bodies of the mid and lower thoracic vertebrae (see Fig. 3.57).
Its superior boundary is a transverse plane passing from the sternal angle to the intervertebral disc between vertebrae TIV and TV.
Its inferior boundary is the diaphragm.Laterally, it is bordered by the mediastinal part of parietal pleura on either side.
Superiorly, it is continuous with the superior mediastinum.Major structures in the posterior mediastinum include the: esophagus and its associated nerve plexus, thoracic aorta and its branches, azygos system of veins, thoracic duct and associated lymph nodes, sympathetic trunks, and thoracic splanchnic nerves.
The esophagus is a muscular tube passing between the pharynx in the neck and the stomach in the abdomen. It begins at the inferior border of the cricoid cartilage, opposite vertebra CVI, and ends at the cardiac opening of the stomach, opposite vertebra TXI.
The esophagus descends on the anterior aspect of the bodies of the vertebrae, generally in a midline position as it moves through the thorax (Fig. 3.97). As it approaches the diaphragm, it moves anteriorly and to the left, crossing from the right side of the thoracic aorta to eventually assume a position anterior to it. It then passes through the esophageal hiatus, an opening in the muscular part of the diaphragm, at vertebral level TX.
The esophagus has a slight anterior-to-posterior curvature that parallels the thoracic portion of the vertebral column, and is secured superiorly by its attachment to the pharynx and inferiorly by its attachment to the diaphragm.
Relationships to important structures in the posterior mediastinumIn the posterior mediastinum, the esophagus is related to a number of important structures. The right side is covered by the mediastinal part of the parietal pleura.
Posterior to the esophagus, the thoracic duct is on the right side inferiorly, but crosses to the left more superiorly. Also on the left side of the esophagus is the thoracic aorta.
Anterior to the esophagus, below the level of the tracheal bifurcation, are the right pulmonary artery and the left main bronchus. The esophagus then passes immediately posteriorly to the left atrium, separated from it only by pericardium. Inferior to the left atrium, the esophagus is related to the diaphragm.
Structures other than the thoracic duct posterior to the esophagus include portions of the hemiazygos veins, the right posterior intercostal vessels, and, near the diaphragm, the thoracic aorta.
The esophagus is a flexible, muscular tube that can be compressed or narrowed by surrounding structures at four locations (Fig. 3.98): the junction of the esophagus with the pharynx in the neck; in the superior mediastinum where the esophagus is crossed by the arch of the aorta; in the posterior mediastinum where the esophagus is compressed by the left main bronchus; in the posterior mediastinum at the esophageal hiatus in the diaphragm.
These constrictions have important clinical consequences. For example, a swallowed object is most likely to lodge at a constricted area. An ingested corrosive substance would move more slowly through a narrowed region, causing more damage at this site than elsewhere along the esophagus. Also, constrictions present problems during the passage of medical instruments.
The arterial supply and venous drainage of the esophagus in the posterior mediastinum involve many vessels. Esophageal arteries arise from the thoracic aorta, bronchial arteries, and ascending branches of the left gastric artery in the abdomen.
Venous drainage involves small vessels returning to the azygos vein, hemiazygos vein, and esophageal branches to the left gastric vein in the abdomen.
Lymphatic drainage of the esophagus in the posterior mediastinum returns to posterior mediastinal and left gastric nodes.
Innervation of the esophagus, in general, is complex. Esophageal branches arise from the vagus nerves and sympathetic trunks.
Striated muscle fibers in the superior portion of the esophagus originate from the branchial arches and are innervated by branchial efferents from the vagus nerves.
Smooth muscle fibers are innervated by cranial components of the parasympathetic part of the autonomic division of the peripheral nervous system, visceral efferents from the vagus nerves. These are preganglionic fibers that synapse in the myenteric and submucosal plexuses of the enteric nervous system in the esophageal wall.
Sensory innervation of the esophagus involves visceral afferent fibers originating in the vagus nerves, sympathetic trunks, and splanchnic nerves.
The visceral afferents from the vagus nerves are involved in relaying information back to the central nervous system about normal physiological processes and reflex activities. They are not involved in the relay of pain recognition.
The visceral afferents that pass through the sympathetic trunks and the splanchnic nerves are the primary participants in detection of esophageal pain and transmission of this information to various levels of the central nervous system.
After passing posteriorly to the root of the lungs, the right and left vagus nerves approach the esophagus. As they reach the esophagus, each nerve divides into several branches that spread over this structure, forming the esophageal plexus (Fig. 3.99). There is some mixing of fibers from the two vagus nerves as the plexus continues inferiorly on the esophagus toward the diaphragm. Just above the diaphragm, fibers of the plexus converge to form two trunks: the anterior vagal trunk on the anterior surface of the esophagus, mainly from fibers originally in the left vagus nerve; the posterior vagal trunk on the posterior surface of the esophagus, mainly from fibers originally in the right vagus nerve.
The vagal trunks continue on the surface of the esophagus as it passes through the diaphragm into the abdomen.
The thoracic portion of the descending aorta (thoracic aorta) begins at the lower edge of vertebra TIV, where it is continuous with the arch of the aorta. It ends anterior to the lower edge of vertebra TXII, where it passes through the aortic hiatus posterior to the diaphragm. Situated to the left of the vertebral column superiorly, it approaches the midline inferiorly, lying directly anterior to the lower thoracic vertebral bodies (Fig. 3.101). Throughout its course, it gives off a number of branches, which are summarized in Table 3.3.
Azygos system of veinsThe azygos system of veins consists of a series of longitudinal vessels on each side of the body that drain blood from the body wall and move it superiorly to empty into the superior vena cava. Blood from some of the thoracic viscera may also enter the system, and there are anastomotic connections with abdominal veins.
The longitudinal vessels may or may not be continuous and are connected to each other from side to side at various points throughout their course (Fig. 3.102).
The azygos system of veins serves as an important anastomotic pathway capable of returning venous blood from the lower part of the body to the heart if the inferior vena cava is blocked.
The major veins in the system are: the azygos vein, on the right; and the hemiazygos vein and the accessory hemiazygos vein, on the left.
There is significant variation in the origin, course, tributaries, anastomoses, and termination of these vessels.
The azygos vein arises opposite vertebra LI or LII at the junction between the right ascending lumbar vein and the right subcostal vein (Fig. 3.102). It may also arise as a direct branch of the inferior vena cava, which is joined by a common trunk from the junction of the right ascending lumbar vein and the right subcostal vein.
The azygos vein enters the thorax through the aortic hiatus of the diaphragm, or it enters through or posterior to the right crus of the diaphragm. It ascends through the posterior mediastinum, usually to the right of the thoracic duct. At approximately vertebral level TIV, it arches anteriorly, over the root of the right lung, to join the superior vena cava before the superior vena cava enters the pericardial sac.