task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
sequence
output
stringlengths
40
314
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
2 values
generation
mams
[ "Went to dinner for a law firm recruiting event, and the service was abysmal." ]
[['food', 'neutral'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Showed up last Sunday night with girlfriends and no reservation, host was very helpful finding us a seats at bar after short wait." ]
[['staff', 'positive'], ['place', 'neutral'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Food - mostly steak and fish - is decent, but the portions are obscene - filet mignon and salmon were HUGE, but they don't come with any side dishes - you have to order and pay extra for them which is inconvenient and expensive." ]
[['food', 'positive'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Justin our waiter, explained to us that the menu changes daily, more of a reason to return." ]
[['staff', 'negative'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "So when i walked in i was just blown away by the lighting, flowers, wood and iron work, a reservationist, and a full bar." ]
[['ambience', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "My entree was just some noodles in a butter sauce with no texture or color, except for a little bit of spinach which was more like a garnish." ]
[['food', 'neutral'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Unfortunately, our waiter set quite a different tone; he disappeared until the end of our meal, when we had to beg for coffees and desserts." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "After two terrific meals in the dining room, we opted to sit at the bar on our third visit." ]
[['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Decor is simple yet functional and although the staff are not the most attentive in the world, you don't feel rushed and the food is good, hot with decent portion sizes and a good selection to suit most tastes." ]
[['ambience', 'positive'], ['staff', 'negative'], ['food', 'positive'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The best thing though was when they messed up the fish order they not only gave us each a free glass of wine, but they took that fish order off our bill!!!" ]
[['food', 'positive'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "This place is decent if you want to hang out with friends (who don't mind paying up) in a low-key atmosphere with good food, but don't mind putting up with sub-par level of service." ]
[['ambience', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The third time, after, an hour and a half of waiting, my friend went up to the host to check the status." ]
[['service', 'negative'], ['staff', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Frustrated, hand the check back to the server and said 'by the way, never got the dessert and he said i did not realize you wanted dessert'" ]
[['price', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We started at the bar with a round of mojitos, which were amazing, and went to our reserved table." ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "While the food was good, service tried way too hard." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Though the wait may be long because they only have 16 tables it is worth it, and it seems to go by fast after a drink or two at the bar." ]
[['service', 'negative'], ['place', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "we had to wait at the bar for a table, but the atmosphere is bustling and is well worth it." ]
[['place', 'neutral'], ['ambience', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "When the waitress brought the check after an hour, she finally noticed that I had been sitting without food and offered to get it for me." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I'd like to try their brunch - the menu looks good." ]
[['food', 'neutral'], ['menu', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Choppy service with a bit of attitude thrown in -when we asked for the restaurant week prix fix menus the aiter made a face." ]
[['service', 'negative'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I KEPT WAITING FOR THE FLAVORS IN THIS RICH LOOKING SAUCE TO TAKE OVER, BUT THEY DID NOT, THE SCALLOP WAS A LITTLE RUBBERY." ]
[['ambience', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "And I pretty much had to tell the waiter that when dinner is late, you usually comp your guests something." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "When we requested a table our bar tab was quickly transferred and the LOVELY hostess sat us at a table of our choice - we chose the corner." ]
[['staff', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Mixed drinks were Casino Quality we weren't sure if the sides on our tables were left from the previous diners, but when our steaks (Only one choice on the menu) arrived." ]
[['food', 'negative'], ['miscellaneous', 'neutral'], ['place', 'neutral'], ['price', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "My g/f and I walked in one night, the owner greeted us at the door and took our coats, sat us in the back room (non-smoking at the time)." ]
[['staff', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "But what would have been a pleasant experience was spoiled by the attitude and actions of the wait staff and the management." ]
[['service', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "All in all, I would not recommend for the food or drinks but I guess I can't expect better for the prices." ]
[['food', 'negative'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "They didn't have any salad and the waiter didn't tell us this very smoothly." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Everything that we tasted on the menu was great, particularly the shrimp tapas (if you don't order it yourself, the waiter will surely recommend it)." ]
[['menu', 'neutral'], ['food', 'positive'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Not very crowded, the wait staff seemed to be in full force except when you needed their attention for something like water or tea." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Karl the Bar Manager makes yummy special drinks for each season be sure to check out what's on his drink menu when you stop in." ]
[['staff', 'neutral'], ['food', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Although there was a 30 min wait I didn't mind because I was able to sit at the bar and have some drinks while talking to the beautiful, charming hostess there." ]
[['place', 'neutral'], ['food', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "All the food was carefully prepared and the presentation was a cut above." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The food was good but it will not make up for the negligent, rude, condescending and hostile service with the full support of their management we received." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Two minutes later, the waitress said we NEED the table, you can not have the appetizer that you ordered." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If you're going with a date to a lounge on that street, stop there for a drink and a quick appetizer first." ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Went with a girlfriend, waited for over an hour while we had drinks, food was ok, service was terrible." ]
[['food', 'neutral'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The best thing on the menu was probably the creamed spinach side and that's saying alot for a steakhouse." ]
[['menu', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "My party of 8 had a seafood feast sampling Sammy's menu and we couldn't believe how great the food was." ]
[['food', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The menu is divided up into several sections, and most of the dishes are smallish plates, like tapas." ]
[['food', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "From having an appetizer, a glass of wine and reading a magazine to sitting by a table to work on my grades, to meeting other fellow teachers for a book club to partying with the owners all my experiences at Futura have always been extremely postive!" ]
[['food', 'neutral'], ['miscellaneous', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Scene With its yellow slat walls, nautical art and well-worn oak bar, this onetime fishermen's lair is now a snug little neighbor to both South Street Seaport and the glass sequoias of nearby Wall Street." ]
[['miscellaneous', 'neutral'], ['place', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our waitress was so helpful with the wine list." ]
[['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "After a 21/2 hour lunch in which our displeasure was apparent, we didn't receive an apology or an explanation from the waiter or manager." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "A hour passed until the waitress came over to give us menus and tell us she would be right back another hour later After trying to order fish she informed us that all fish entrees on the menu was sold out We took a minute to make a second choice and tried to order something else that we were told was also sold out." ]
[['staff', 'negative'], ['menu', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "One hour into our dinner, we were told by the hostess that we needed to hurry up and finish so that they could accommodate the next party's reservation." ]
[['food', 'neutral'], ['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We got so frustrated with our waitress, who stopped by twice over the course of 2 1/2 hours, that we had to order everything from the bar." ]
[['staff', 'negative'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "true I had to wait longer for my table, but the ambience and the food definitely made up for it." ]
[['miscellaneous', 'neutral'], ['ambience', 'positive'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The service and surroundings couldn't have been better, but the food was very disapointing at best." ]
[['place', 'positive'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The New Prospect Cafe pretends to be fancy and the prices indicate fancy, but the food is mediocre at best and the service is terrible." ]
[['price', 'positive'], ['food', 'negative'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "While I love this place, I do recommend going here mostly for lunch or an early dinner because the crowd and long wait can be annoying." ]
[['food', 'neutral'], ['service', 'negative'], ['place', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Decent value for decent chinese food for the area - obviously you can get cheaper down in chinatown." ]
[['miscellaneous', 'positive'], ['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waiter seemed truly disinterested (he forgot to bring the bread basket and the wine was served after he delivered the entrees." ]
[['staff', 'negative'], ['food', 'neutral'], ['service', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "On your way out, pick up a bar of their Swiss chocolate." ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "During the day, the sushi bar can be backed up a bit (thanks to their unbeatable lunch specials) so order early." ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "They have Boylan's root beer, coffee that's freshly ground that day, and a relaxed casual atmosphere with friendly waitresses." ]
[['food', 'neutral'], ['miscellaneous', 'positive'], ['ambience', 'positive'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "some old drunk guy who claims he is an American born in France seems to be a regular at the bar, he sat down next to us, listened to our whole conversation then started aggressing us verbally, and the waiter took the longest time to intervene." ]
[['place', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The portions are now very small, the sauces are overly-ambitious usually inedible while the service is still good, the restaurant, due to its popularity, seems frantic." ]
[['miscellaneous', 'negative'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Bernard is a great host; it didn't bother me a bit that he recited the entire menu to my wife." ]
[['staff', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The menu could be a little bigger but my food as well as my boyfriend's was outstanding (and a lot less expensive than I expected)." ]
[['menu', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The fresh sliced mozzerella, the sweet roasted peppers, the hint of garlic and oil, are just some of the ingredients that produce the light otherworldly tasty pizza at Grimaldi's." ]
[['ambience', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I was told they had one(early) reservation; felt deceived b/c when I left the place was empty!" ]
[['miscellaneous', 'neutral'], ['place', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "A collection of stormy sea paintings and two mermaid figureheads hoisting lights above the bar set a lulled maritime mood." ]
[['miscellaneous', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I was shocked by the amount of butter used in the pork and lamb dishes -- the smell of butter was literally wafting off the plate!" ]
[['food', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "About the wait - be prepared to - it isn't just anyplace offering top notch cuisine for about $25 all in." ]
[['service', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Great food, but tiny portions and inexcusable service - disorganized, amateurish and definitely overpriced by a long shot." ]
[['food', 'positive'], ['miscellaneous', 'negative'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "while I think the menu could use better appetizers all of the main courses are DELICIOUS- also the service is so much better than the ratings." ]
[['menu', 'neutral'], ['food', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Minutes turned into an hour-long wait with non-existent standing room." ]
[['service', 'neutral'], ['miscellaneous', 'neutral'], ['place', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our waitress hardly spoken English - and not because she spoke French - and she spilled wine all over me and didn't try to make any amends." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Decor is sort of homey, with mismatched tables and plates." ]
[['ambience', 'positive'], ['place', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "But wait, it gets even better, the mussels were so fishy that I had the server try one since he had a hard time believing that this was true." ]
[['service', 'neutral'], ['food', 'positive'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The menu: HOT DOGS, that's it, nothing else." ]
[['menu', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The staff was gracious enough to keep her arrival a secret by letting us wait at the bar and holding our table for us until she and our father arrived 45 minutes late (delayed flight)." ]
[['staff', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The fish of the day can be prepared five different ways according to the menu, but fails to mention that those five different ways are just five different sauces that come out with the whole, deep fried fish." ]
[['menu', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Well, its bar is beginning to attract the high-heeled Forever 21 ladies and hair-gelled men-who-love-them crowd (alas) and yet I must admit-- the food is damn good." ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Seated just after 2; I commend them 'cause they were the only decent brunch spot that would take our reservation, and they did their best to seat us promptly." ]
[['place', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "After being seated the waiter was prompt with coffee and taking my order." ]
[['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Once the manager loudly referred to the customers patiently waiting at the all-you-can-eat buffet line as 'hungry animals attacking for food'" ]
[['staff', 'negative'], ['service', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Okay, so the bathroom is a little scary and the milieu brings to mind an old diner or cafeteria, but simply put, the food here is the best." ]
[['place', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Overall, the quality of the food won us over, but if there's one thing the management needs to work on, it's service." ]
[['staff', 'negative'], ['service', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It was a crowded Wednesday night but we were seated near the kitchen right away, talked to all of the staff who were friendly and made the evening special for my date and I." ]
[['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Now admittedly I went at lunch, when presumably the kitchen and waitstaff are less taxed than at dinner, but everything was fine." ]
[['place', 'neutral'], ['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "My wife and I, from Houston, and another couple from Conneticut were visiting Manhattan for the weekend and I chose Shula's for dinner because I had heard that it was a good steak house." ]
[['food', 'neutral'], ['place', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The food is delish, you just have to know the manners to consume, if you don't want to be frustrated with the service." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "ten minutes after we ordered the waitress came to our table and told us we had ordered complicated entrees and we would be waiting for 45 minutes." ]
[['miscellaneous', 'neutral'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "For example, the flavor in each dish didn't really stand out and the spanish rice seemed more like uncle ben's with peas and corn mixed in." ]
[['ambience', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We were never offered dessert because our waiter spent about 20 minutes at the bar calculating the checks instead." ]
[['food', 'neutral'], ['staff', 'negative'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "During dinner, we sat drinkless once again, as the server and owner never checked on us." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We preferred to gaze at our burgers while avoiding having to look at the wait staff, but no complaints." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If you're dining solo, you will feel completely at ease in the cozy environs; in fact, you're likely to see at least one other solo diner hunched over a book, sipping a glass of Chianti." ]
[['food', 'neutral'], ['ambience', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "After I inquired why the food was taking so long, the waitress told us that the 2 dishes we ordered take a long time." ]
[['food', 'neutral'], ['staff', 'neutral'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Perfect place to bring a date before the theater, a mother/ grandmother/ or aunt for their birthday, or friend for lunch." ]
[['place', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food The French-Belgian menu is small, but everything on it is satisfyingly savory, from a simple pot of mussels in a choice of sauces (beer and bacon, creamy mushroom, or white wine and garlic broth), to beef stewed with beer and prunes; from a juicy croque monsieur and beyond." ]
[['food', 'negative'], ['menu', 'negative'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Waitress forgot drinks, and watched us begin our dinner without even water, strange." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Friendly service, and outdoor seating in the warm months, eases the crush." ]
[['service', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food At dinner, a nicely gamey chopped liver mousse, watercress salad with blue cheese and walnuts, and meat loaf with mashed potatoes stand out among the menu's bistro fare." ]
[['food', 'positive'], ['menu', 'neutral'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food An a la carte menu offers specialties like Kobe beef cooked on a hot rock, but the Kaiseki, a traditional multicourse tasting dinner served on gorgeous pottery and porcelain, promises dining adventure." ]
[['food', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If the waitress had been remotely available or had come by to enquire about our food, I certainly would have sent it back, but since I was being taken out for a birthday dinner I did not want to make a fuss." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It's a place for the owner staff's friends, so if you're not one of them, you're in for a wait." ]
[['staff', 'negative'], ['service', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The loud belly dancer with her scarf dragging across my food and table, almost knocked over my water glass." ]
[['food', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]