task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
sequence
output
stringlengths
19
428
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
2 values
generation
semeval-2014
[ "The seats are uncomfortable if you are sitting against the wall on wooden benches." ]
{'aspect_term': [['seats', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I only tried a simple dish of spinach ravioli in a light oil and garlic sauce, but it actually faired better than most NYC Italian joints I've tried similar dishes at." ]
{'aspect_term': [['spinach ravioli in a light oil and garlic sauce', 'positive'], ['dish', 'positive'], ['dishes', 'neutral']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Very affordable and excellent ambient!" ]
{'aspect_term': [['ambient', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The last two times I ordered from here my food was soo spicy that I could barely eat it, and the spice took away from the flavor of the dish." ]
{'aspect_term': [['food', 'negative'], ['flavor', 'negative'], ['dish', 'negative'], ['spice', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "we were tired and cold when we got to the restaurant, then we sat down to begin ordering appetizers." ]
{'aspect_term': [['appetizers', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is delicious." ]
{'aspect_term': [['food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is very good for it's price, better than most fried dumplings I've had." ]
{'aspect_term': [['food', 'positive'], ['price', 'positive'], ['fried dumplings', 'negative']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is good, especially their more basic dishes, and the drinks are delicious." ]
{'aspect_term': [['food', 'positive'], ['dishes', 'positive'], ['drinks', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food was spicy and delicious." ]
{'aspect_term': [['food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "i recommend the thai popcorn :)" ]
{'aspect_term': [['thai popcorn', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The sushi is average and the prices are anything but." ]
{'aspect_term': [['sushi', 'neutral'], ['prices', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Very good service and very good prices." ]
{'aspect_term': [['service', 'positive'], ['prices', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is inventive but still keeps traditional indian flavoring." ]
{'aspect_term': [['food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We visited Orsay during NY Restaurant Week and tried their $35 menu." ]
{'aspect_term': [['menu', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "An excellent alternative to fast food joints and ordering in but, the food was slightly disappointing." ]
{'aspect_term': [['fast food', 'negative'], ['food', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "If the omakase is to showcase technique and variety, serving almost 40% of items BBQ-ed and a spicy tuna roll wrapped with not-so-fresh nori seems to be a rather limp performance." ]
{'aspect_term': [['spicy tuna roll', 'negative'], ['serving', 'neutral'], ['nori', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'neutral'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Don't eat here unless you're starving for thai food and you work next door." ]
{'aspect_term': [['thai food', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We didn't get drink refills and she didn't even offer us the option of dessert." ]
{'aspect_term': [['drink refills', 'negative'], ['dessert', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We arrived on time for our reservation and seated promptly.The" ]
{'aspect_term': [['reservation', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Again, the waitress was awesome." ]
{'aspect_term': [['waitress', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "There was a small wait, but shorter than I expected." ]
{'aspect_term': [['wait', 'conflict']], 'aspect_category': [[None, 'conflict']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I do not recommend lunch specials just because it tasts the same with other regular chinese restaurant." ]
{'aspect_term': [['lunch specials', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "My turkey burger was not cooked at all, my friends salmon was completely raw." ]
{'aspect_term': [['turkey burger', 'negative'], ['salmon', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "This is one of the best comfort food places in the city." ]
{'aspect_term': [['comfort food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Very romantic fires - I've literally spent hours at Lanterna, drinking wine from their extensive wine and enjoying the ambience." ]
{'aspect_term': [['wine', 'positive'], ['ambience', 'positive'], ['wine', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Pizza is terrific, as is homemade pasta." ]
{'aspect_term': [['Pizza', 'positive'], ['homemade pasta', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I care more about the food and ambience." ]
{'aspect_term': [['food', 'neutral'], ['ambience', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "You rarely have to wait for a seat and the currys (masaman, green, red) are full of flavor and come super spicy if you ask for it." ]
{'aspect_term': [['seat', 'positive'], ['currys (masaman, green, red)', 'positive'], ['flavor', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We ordered the special, grilled branzino, that was so infused with bone, it was difficult to eat." ]
{'aspect_term': [['grilled branzino', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "They charge different prices all the time." ]
{'aspect_term': [['prices', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Though the Spider Roll may look like a challenge to eat, with soft shell crab hanging out of the roll, it is well worth the price you pay for them." ]
{'aspect_term': [['Spider Roll', 'conflict'], ['price', 'positive'], ['shell crab', 'positive']], 'aspect_category': [[None, 'conflict'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "A very inviting restaurant, with friendly service." ]
{'aspect_term': [['service', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Chance is a small cozy restaurant, with a romantic feel to it, the decor is great." ]
{'aspect_term': [['decor', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The staff is very attentive and we can almost always get a table." ]
{'aspect_term': [['staff', 'positive'], ['table', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is good, but very expensive for the casualness of it." ]
{'aspect_term': [['food', 'conflict']], 'aspect_category': [[None, 'conflict']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "If the weather is nice, try to snag an outside table." ]
{'aspect_term': [['table', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "So, for good food i'd recommend it, but not for a fun night out." ]
{'aspect_term': [['food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Service was slow had to wait to order and get food although not crowded." ]
{'aspect_term': [['Service', 'negative'], ['food', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is o.k., but not any better than what you get at a good neighborhood restaurant." ]
{'aspect_term': [['food', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "For some reason, all the seafood on the menu was unavailable except for the Salmon." ]
{'aspect_term': [['seafood', 'negative'], ['menu', 'negative'], ['Salmon', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The service was terrible, we had to wait for everything and ask several of different people for the same thing before we were allowed to be served." ]
{'aspect_term': [['service', 'negative'], ['served', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The staff was accomodating, the food was absolutely delicious and the place is lovely." ]
{'aspect_term': [['staff', 'positive'], ['food', 'positive'], ['place', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Have the iced tea." ]
{'aspect_term': [['iced tea', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I like Cafe Noir dont get me wrong, it is jsut that the people who work there are evil and incompetent!!" ]
{'aspect_term': [['people', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Have always found that the waiters will go out of their way to be helpful, despite the fact they are often busy with lots of diners." ]
{'aspect_term': [['waiters', 'positive'], ['diners', 'neutral']], 'aspect_category': [[None, 'positive'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "This place has the best Chinese style BBQ ribs in the city." ]
{'aspect_term': [['BBQ ribs', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Overall, not worth the money." ]
{'aspect_term': [['money', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Overall a disappointing experience for that price category." ]
{'aspect_term': [['price', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "from an English speaking staff." ]
{'aspect_term': [['staff', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The main course had an average portion, and was decent overall." ]
{'aspect_term': [['main course', 'positive'], ['portion', 'neutral']], 'aspect_category': [[None, 'positive'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We arrived for dinner expecting to be impressed by a place that has an impressive past - but, that's just it -- the PAST!" ]
{'aspect_term': [['dinner', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We only ordered desserts and drinks, but no refills were offered." ]
{'aspect_term': [['desserts', 'neutral'], ['drinks', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Oh, and the complimentary pudding dessert was just enough- yummy!" ]
{'aspect_term': [['pudding dessert', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Solid wine list, knowledgeable staff, friendly owners and an adventurous, ever-changing menu keep us coming back." ]
{'aspect_term': [['wine list', 'positive'], ['staff', 'positive'], ['owners', 'positive'], ['menu', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The people that work there are always so friendly you forget you are in New York sometimes." ]
{'aspect_term': [['people', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Food was good and the view of the new york city skiline was terrific even on a foggy rainy day like that of when I went." ]
{'aspect_term': [['Food', 'positive'], ['view', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We had a wonderful meal at Naples 45 a month ago on a visit to NYC." ]
{'aspect_term': [['meal', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The sake menu should not be overlooked!" ]
{'aspect_term': [['sake menu', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Every waitress and customer who passed by me bumped into my chair." ]
{'aspect_term': [['waitress', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "After complaining about the chicken dish, the manager came over to tell us that, no one had ever complained before, and that we just didn't know what the dish was supposed to taste like." ]
{'aspect_term': [['chicken dish', 'negative'], ['manager', 'negative'], ['dish', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Their pad penang is delicious and everything else is fantastic." ]
{'aspect_term': [['pad penang', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I found it on a cold night, the perfect spot to warm up." ]
{'aspect_term': [['spot', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "They didn't give us the dinner special until we asked for it." ]
{'aspect_term': [['dinner special', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I've rarely had a problem with slow staff in the 10 years I've been going." ]
{'aspect_term': [['staff', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "They're also friendlier here, especially the owner, Kenny." ]
{'aspect_term': [['owner', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We, there were four of us, arrived at noon - the place was empty - and the staff acted like we were imposing on them and they were very rude." ]
{'aspect_term': [['staff', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I really recommend the very simple Unda (Egg) rolls." ]
{'aspect_term': [['Unda (Egg) rolls', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "You should pass on the calamari." ]
{'aspect_term': [['calamari', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I work near-by, and they have the BEST oatmeal in the neighborhood- not a packaged or quick-cooked item." ]
{'aspect_term': [['oatmeal', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The white bean brushetta to start was incredible and the pasta was phenomenal." ]
{'aspect_term': [['white bean brushetta', 'positive'], ['pasta', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "This place is always very crowded and popular." ]
{'aspect_term': [['place', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I can't wait for summer, when they serve outside on their gigantic patio." ]
{'aspect_term': [['patio', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "No one asked what was wrong as we left with nothing touched on our plates." ]
{'aspect_term': [['plates', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We also had shared a house salad that was fresh." ]
{'aspect_term': [['house salad', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The waiters were not attentive except that the bill turned up on the table before we were finished." ]
{'aspect_term': [['waiters', 'negative'], ['bill', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I grew up eating Dosa and have yet to find a place in NY to satisfy my taste buds." ]
{'aspect_term': [['Dosa', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The waitress, seems to be more concerned of looking good than actually waitressing." ]
{'aspect_term': [['waitress', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Please if your thinking about it go, and stay the wait you won't be disappointed." ]
{'aspect_term': [['wait', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We were disappointed with the pre-fixe menu of only 2 choices per course (other restaurants offer 3 choices) and ended up ordering a la carte." ]
{'aspect_term': [['pre-fixe menu', 'negative'], ['choices per course', 'neutral'], ['ordering a la carte', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'neutral'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "My first time there I happened not to like the Crab Croquette apt that i ordered and they were happy to change it for me without making no big deal." ]
{'aspect_term': [['Crab Croquette apt', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Ambiance- relaxed and stylish." ]
{'aspect_term': [['Ambiance', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The menu is limited but almost all of the dishes are excellent." ]
{'aspect_term': [['menu', 'negative'], ['dishes', 'positive']], 'aspect_category': [[None, 'negative'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Butter was melted, white wine warm, cheese oozing everywhere." ]
{'aspect_term': [['Butter', 'negative'], ['white wine', 'negative'], ['cheese', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Three courses - choices include excellent mussels, puff pastry goat cheese and salad with a delicious dressing, and a hanger steak au poivre that is out of this world." ]
{'aspect_term': [['mussels', 'positive'], ['puff pastry goat cheese', 'positive'], ['salad with a delicious dressing', 'positive'], ['hanger steak au poivre', 'positive'], ['courses', 'neutral']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "And forget what you read under me, the atmosphere isn't that bad either." ]
{'aspect_term': [['atmosphere', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I ordered the chu chu curry and my friend ordered the pad thai chicken." ]
{'aspect_term': [['chu chu curry', 'neutral'], ['pad thai chicken', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "It is obvious that no one in the restaurant has any idea about or experience with Japanese cuisine." ]
{'aspect_term': [['Japanese cuisine', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it." ]
{'aspect_term': [['toast', 'negative'], ['mayonnaise', 'negative'], ['bacon', 'negative'], ['cheese', 'neutral'], ['ingredients', 'negative'], ['plate', 'neutral'], ['omelet', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'negative'], [None, 'neutral'], [None, 'negative'], [None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "If you go for the pre-theatre menu, it's an even greater deal." ]
{'aspect_term': [['pre-theatre menu', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "From beginning appetizers, the scallops were incredible, to the delicious chocolate souffle with rasberry mint sorbet, we were delighted by the taste sensations." ]
{'aspect_term': [['beginning appetizers', 'positive'], ['scallops', 'positive'], ['chocolate souffle with rasberry mint sorbet', 'positive'], ['taste', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "My goodness, everything from the fish to the rice to the seaweed was absolutely amazing." ]
{'aspect_term': [['fish', 'positive'], ['rice', 'positive'], ['seaweed', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Deep Fried Skewers are good and still rare to find in NYC." ]
{'aspect_term': [['Deep Fried Skewers', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Great bar, most gorgeous bartenders you've ever seen (specifically the blond lady)." ]
{'aspect_term': [['bar', 'positive'], ['bartenders', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The people in the restaurant were pretty obnoxious and loud." ]
{'aspect_term': [['people', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "My family and I ate here last night for our annual Christmas dinner with the family members who would rather spend the holidays with friends out-of-town." ]
{'aspect_term': [['Christmas dinner', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Southern Indian cuisine is still there, too." ]
{'aspect_term': [['Southern Indian cuisine', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The prices were CHEAP compared to the quality of service and food." ]
{'aspect_term': [['prices', 'positive'], ['service', 'positive'], ['food', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Behind this counter, two men are squeezed in." ]
{'aspect_term': [['counter', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "If your visiting, you'll enjoy the ambiance and the fact that it's in Time Sq..." ]
{'aspect_term': [['ambiance', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "And, atlhough tables opened up next to us and we ASKED for a slightly larger space, they left us awkardly seated." ]
{'aspect_term': [['tables', 'neutral'], ['space', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}